<dfn id="a4kkq"></dfn>
<ul id="a4kkq"></ul>
    • 自動控制職稱論文大全11篇

      時間:2023-03-27 16:39:46

      緒論:寫作既是個人情感的抒發(fā),也是對學(xué)術(shù)真理的探索,歡迎閱讀由發(fā)表云整理的11篇自動控制職稱論文范文,希望它們能為您的寫作提供參考和啟發(fā)。

      篇(1)

      現(xiàn)在我國運行的電氣工程自動化工程采取的控制系統(tǒng)一般有集中監(jiān)控、DCS(分布式控制)兩種。首先集中控制系統(tǒng)的優(yōu)勢在于,它將全部功能都安置在一個處理器中,在系統(tǒng)設(shè)計、維護以及運行等方面都比較簡單。其劣勢在于處理器承擔的任務(wù)量較大;在此控制體系中,隔離器件閉鎖和斷路器聯(lián)鎖是運用硬接線進行連接,在設(shè)備擴容等方面比較困難,其操作難度也比較大。其次DCS系統(tǒng)是在集中控制系統(tǒng)的前提下設(shè)計并發(fā)展起來的,在現(xiàn)代電氣工程自動化工程控制系統(tǒng)中獲得較為廣泛的應(yīng)用。其劣勢在于使用和傳統(tǒng)儀表相似的模擬儀表,減少系統(tǒng)安全可靠性,在維修環(huán)節(jié)也比較困難,各個設(shè)計廠家沒有規(guī)范而統(tǒng)一的標準,加重維修的成本,并且其價格比較高。

      1.2電氣工程自動化工程控制系統(tǒng)還不具備標準化端口

      電氣工程自動化工程控制系統(tǒng)接口到目前為止還沒有統(tǒng)一、完善的標準,這種情況提升工程造價,阻礙數(shù)據(jù)資源共享的實現(xiàn)。自動化體系設(shè)計方案很重要,然而很多企業(yè)沒有規(guī)范的方案,各個廠家和企業(yè)間硬件和軟件交換數(shù)據(jù)有差異,導(dǎo)致企業(yè)間難以深入的交流和信息交換。同時電氣工程自動化工程控制沒有實現(xiàn)統(tǒng)一化,難以根據(jù)客戶要求設(shè)計、建立規(guī)范、標準的電氣工程自動化工程控制體系。

      1.3電氣工程自動化工程控制沒有實現(xiàn)專業(yè)化

      在電氣工程自動化工程控制設(shè)計、安裝以及操作等環(huán)節(jié),相關(guān)工作人員的專業(yè)技術(shù)比較薄弱,需要進一步提高。此外我國電氣工程自動化工程控制習(xí)題創(chuàng)新能力不足,一般產(chǎn)品屬于中低檔,需要提高其創(chuàng)新能力。

      2構(gòu)建電氣工程自動化工程控制系統(tǒng)的發(fā)展對策

      2.1建立一體化的電氣工程自動化工程控制體系

      要從各個環(huán)節(jié)建立起具有一體化的電氣工程自動化工程控制體系。首先國家要按照電氣工程自動化工程控制體系具有技術(shù)水平和技術(shù)特點,制定統(tǒng)一的產(chǎn)品規(guī)范。其次廠家和企業(yè)要加強交流,從設(shè)備精簡、調(diào)試與維修以及技術(shù)合理性等多方面向規(guī)范化的方向進行制造和生產(chǎn),讓控制體系更科學(xué)。最后要研發(fā)出新型、操控更方便的一體化控制系統(tǒng),可以運用社會性質(zhì)和分工外包間的協(xié)作,讓零部件的生產(chǎn)走商業(yè)化生產(chǎn)的路線,促進電子工程自動化工程控制體系的一體化。

      2.2運用國際化生產(chǎn)標準

      IEC61850是現(xiàn)在控制系統(tǒng)廠家所認可的國際標準,可以參照這個標準對控制體系進行研究和開發(fā)。另外可以運用微軟公司所制定的標準技術(shù),由于企業(yè)策劃電氣工程自動化工程控制系統(tǒng)時,PC系統(tǒng)是連接管理系統(tǒng)和控制系統(tǒng)的中間系統(tǒng),其接口具有標注化,能夠保證廠家和企業(yè)間實施軟件和硬件的數(shù)據(jù)交換,妥善的解決由于通訊而產(chǎn)生的問題。

      2.3引進和培養(yǎng)電氣工程自動化工程控制系統(tǒng)的專業(yè)人才

      隨著電氣工程自動化工程控制逐漸集成化和高智能化,對其制造人員、維修人員和安裝人員都具有很高的要求,所以要引進和培養(yǎng)專業(yè)技術(shù)較強的人員。首先企業(yè)要培養(yǎng)具有實際操作能力的人才,他們要了解和掌握軟件和硬件系統(tǒng)的操作。其次對安裝人員記性專業(yè)技術(shù)進行培訓(xùn),使之懂得安裝的流程和技術(shù)。最后要更新技術(shù)人員的知識結(jié)構(gòu),可以引進人才,通過引進人才的“傳幫帶”,培養(yǎng)新人,促進他們在維修和系統(tǒng)保養(yǎng)等方面的學(xué)習(xí),提高工程系統(tǒng)安全可靠性。

      篇(2)

      化學(xué)需氧量(COD)是評價水體污染的重要指標之一。COD測定的主要方法有高錳酸鹽指數(shù)法(GB11892-89)和重鉻酸鉀氧化法(GTB11914-89)。高錳酸鹽指數(shù)法適用于飲用水、水源水和地面水的測定。重鉻酸鉀氧化法(CODCr)適用于工業(yè)廢水、生活污水的測定,但此法要消耗昂貴的硫酸銀和毒性大的硫酸汞,造成嚴重的二次污染,且加熱消解時間長、耗能大,缺點十分明顯,已不適應(yīng)我國環(huán)境保護發(fā)展的需求。為此,人們從不同方面進行了改進。

      1標準法的改進

      1.1消解方法的改進

      為縮短傳統(tǒng)的回流消解時間,早期進行的工作包括密封消解法、快速開管消解法、替代催化劑的選擇等;近期的工作主要包括采用微波消解法、聲化學(xué)消解法、光催化氧化法等新技術(shù)。

      1.1.1替代催化劑的研究重鉻酸鉀法所用的催化劑Ag2SO4價格昂貴,分析成本高。因此,畢業(yè)論文研究Ag2SO4的替代物,以求降低分析費用有一定的實用性。如以MnSO4代替Ag2SO4是可行的,但回流時間仍較長。Ce(SO4)2與過渡金屬混合顯示出很好的協(xié)同催化效應(yīng),如以MnSO4-Ce(SO4)2復(fù)合催化劑代替Ag2SO4[1],測定廢水COD,不但可降低測定費用,還可降低溶液酸度和縮短分析時間,與重鉻酸鉀法無顯著差異。

      1.1.2微波消解法如微波消解無汞鹽光度法測定COD;微波消解光度法快速測定COD;無需使用HgSO4和Ag2SO4測定COD的微波消解法;氧化鉺作催化劑微波消解測定生活污水COD等。Ramon[2]等采用聚焦微波加熱常壓下快速消解測定COD。

      與標準回流法相比,微波消解時間從2h縮短到約10min,且消解時無需回流冷卻用水,耗電少,試劑用量大大降低,一次可完成12個樣品的消解,減輕了銀鹽、汞鹽、鉻鹽造成的二次污染[3]。專著[4]對此作了較全面的總結(jié)。

      1.1.3聲化學(xué)消解法盡管微波消解時間短,但消解完后要等消解罐冷卻至室溫仍需一定時間。而超聲波消解方便,設(shè)備簡單,且不受污染物種類及濃度的限制,近年來已有一些應(yīng)用研究[5]。鐘愛國[6]使用自制的聲化學(xué)反應(yīng)器對不同水樣進行了聲化學(xué)消解試驗,提高了分析效率,減少了化學(xué)試劑用量,COD測定范圍150mg·L-1~2000mg·L-1,標準偏差≤615%,加標回收率96%~120%。超聲波消解時,超聲波輻射頻率和聲強是兩個重要的影響因素。試驗表明,超聲波輻射標準水樣30min時,低頻(20kHz)、適當高的聲強(80W·cm-2)有利于水樣的完全消化。

      1.1.4光催化氧化法紫外光氧化快速、高效,在常溫常壓下進行,不產(chǎn)生二次污染,因此對水和廢水分析的優(yōu)勢特別突出。近幾年來,半導(dǎo)體納米材料作為催化劑消除水中有機污染物的方法已引起了人們的廣泛關(guān)注。當用能量等于或大于半導(dǎo)體禁帶寬度(312eV)的光照射半導(dǎo)體時,可使半導(dǎo)體表面吸附的羥基或水氧化生成強氧化能力的羥基自由基(·OH),從而使水中的有機污染物氧化分解。艾仕云等[7]提出納米ZnO和KMnO4協(xié)同氧化體系,并據(jù)此建立了測定COD的方法,所得結(jié)果的可靠性和重現(xiàn)性與標準法相當。他們還使用K2Cr2O7氧化劑、納米TiO2光催化劑測定COD[8]。通過光催化還原K2Cr2O7生成的Cr3+濃度變化,可以獲得樣品的COD值。但反應(yīng)仍需恒溫攪拌,反應(yīng)液需離心過濾。操作煩瑣,且不能在線快速分析。

      1.2測定方法的改進

      1.2.1分光光度法分光光度法測定COD是在強酸性溶液中過量重鉻酸鉀氧化水中還原性物質(zhì),Cr6+還原為Cr3+,英語論文利用分光光度計測定Cr6+或Cr3+來實現(xiàn)COD值測定。Inaga等以Ce(SO4)2作氧化劑,加熱反應(yīng)后測定吸光度,計算出COD值。Konno使用自制的比色計與PC機相聯(lián)測定COD,所得結(jié)果與標準法基本一致。光度法測得COD值快速、準確、成本低等。目前,國內(nèi)外不少COD快速測定儀均是基于光度法原理。如美國HACH公司制造的COD測定儀是美國國家環(huán)保局認可的COD測量方法。

      1.2.2電化學(xué)分析法

      (1)庫侖法庫侖法是我國測定COD的推薦方法,該法利用電解產(chǎn)業(yè)的亞鐵離子作庫侖滴定劑進行庫侖滴定,根據(jù)消耗的電量求得剩余K2Cr2O7量,從而計算出COD。廣州怡文科技有限公司和中國環(huán)境監(jiān)測總站研制的EST22001COD在線自動監(jiān)測儀,采用庫侖滴定原理,測量范圍5mg/L~1000mg/L;測量時間30min~60min,測量誤差≤±5%FS;重復(fù)誤差≤±3%FS,與手動分析具有很好的相關(guān)性。

      (2)電解法此法既不外加氧化劑,也不加熱消解水樣,而是利用電化學(xué)原理直接測量水中有機物的含量,是COD測定方法的突破。方法原理基于特殊電極電解產(chǎn)生的羥基自由基(·OH)具有很強的氧化能力,可同步迅速氧化水中有機物,較難氧化的物質(zhì)(如煙酸、吡啶等)也均能被·OH氧化。羥基自由基被消耗的同時,工作電極上電流將產(chǎn)生變化。當工作電極電位恒定時,電流的變化與水中有機物的含量成正比關(guān)系,通過計算電流變化便可測量出COD值。作者在這方面作了一些探索工作,取得了初步的結(jié)果[9,10]。由于水樣不需消解,極大縮短了分析流程,還克服了傳統(tǒng)方法中“二次污染”的問題。目前,這類儀器代表產(chǎn)品是德國LAR公司的Elox100A型COD在線自動監(jiān)測儀h[11]。儀器測量范圍從1mg/L~10000mg/L,最大可到100000mg/L,測量周期2min~6min。此儀器在歐美各國已得到較廣泛的應(yīng)用,在我國也獲得國家質(zhì)量監(jiān)督檢疫總局計量器具型式批準證書。

      (3)其他電化學(xué)分析法Dugin[12]提出以Ce(SO4)2為氧化劑,利用pH電極和氧化還原電極直接測定電勢從而測定COD值的方法。Belius2tiu[13]以兩種不同的玻璃電極組成電池,通過直接測定電池電動勢,對水樣中COD值進行測定。趙亞乾[14]以一定比例的反應(yīng)溶液回流10min后,冷卻稀釋,用示波器指示終點進行示波電位滴定測定COD。

      Westbroek等[15]提出Pt-Pt/PbO2旋轉(zhuǎn)環(huán)形圓盤電極多脈沖電流分析法,通過電化學(xué)方法產(chǎn)生強氧化劑,碩士論文有機污染物在圓盤電極表面直接氧化或與產(chǎn)生的氧化物質(zhì)反應(yīng)而間接被轉(zhuǎn)化。伏安計時電流法和多脈沖計時電流法測COD,可在幾秒中獲得結(jié)果,而且可以在線監(jiān)測。形成的強氧化媒介可使工作電極表面保持清潔。但方法檢測限較高,不適合地表水或輕度污染水的測定。但德忠等[16]提出混合酸消解和單掃描極譜法快速測COD的方法。該法基于用單掃描極譜法測定混合酸(H3PO4-H2SO4)消解體系中過量的Cr6+,從而間接測定COD。混合酸消解回流時間只需15min。Venkata等[17]使用示差脈沖陽極溶出伏安法(DPASV)進行電化學(xué)配位滴定確定有機金屬絡(luò)合物的絡(luò)合能力,從而測定COD。

      .2.3化學(xué)發(fā)光法根據(jù)重鉻酸鉀消解廢水后其最終還原產(chǎn)物Cr3+濃度與COD值成正比關(guān)系,以及在堿性條件下,Luminol-H2O2-Cr3+體系產(chǎn)生很強的化學(xué)發(fā)光的原理,文獻[18,19]提出一種用光電二極管做檢測器測定水體化學(xué)需氧量的新方法。

      1.2.4紫外吸收光譜法紫外吸收光譜法是通過測量水樣中有機物的紫外吸收光譜(一般用254nm波長),直接測定COD。已有工作表明,不少有機物在紫外光譜區(qū)有很強的吸收,在一定的條件下有機物的吸光度與COD有相關(guān)性,利用這種相關(guān)性可直接測定COD。這種方法不像COD、總有機碳(TOC)方法那樣明確,但在特定水體中有極高的相關(guān)性,也能真實反映有機物含量。基于紫外吸收原理測定COD的儀器已有生產(chǎn)。這類方法均不需添加任何試劑、無二次污染、快速簡單,但前提條件是水質(zhì)組成必須相對穩(wěn)定。此方法在日本已是標準方法,但在歐美各國尚未推廣應(yīng)用,在我國尚需開展相關(guān)的研究。

      2自動在線分析技術(shù)

      流動分析(FA)用于水樣COD的測定可將樣品消解和測定實現(xiàn)一體化,留學(xué)生論文使整個過程實現(xiàn)在線化、自動化。Korinaga[20]提出以Ce(SO4)2為氧化劑,采用空氣整段間隔連續(xù)流動分析法對環(huán)境水樣中的COD進行測定,采樣頻率達90次/h,但需特制的閥,且管長達18m。陳曉青等[21]提出測定COD的流動注射停流法,系統(tǒng)以微機控制蠕動泵的啟停,并記錄分光光度計檢測到的信號。由于停流技術(shù)的引入,解決了慢反應(yīng)中樣品的過度分散問題。

      Cuesta等[22]提出COD的微波消解火焰原子吸收光譜-流動注射分析法。用微波加熱消解樣品,未被樣品中有機物質(zhì)還原的Cr6+保留在陰離子交換樹脂上,Cr6+經(jīng)洗脫后用火焰原子吸收光譜法測定。這種方法在檢測中沒有基體效應(yīng)的影響。

      盡管流動注射分析的優(yōu)勢突出,但仍免不了傳統(tǒng)加熱方式。為了提高在線消解效率,不得不加長反應(yīng)管或采用停留技術(shù),這又導(dǎo)致分析周期延長或低的采樣頻率。醫(yī)學(xué)論文微波在線消解效果雖好,但去除產(chǎn)生的氣泡使流路結(jié)構(gòu)復(fù)雜化。但德忠等[23]將流動注射和紫外光氧化技術(shù)引入高錳酸鹽指數(shù)的測定中,建立了紫外光催化氧化分光光度法測定高錳酸鹽指數(shù)的流動分析體系,并對多種標準物質(zhì)(葡萄糖、鄰苯二甲酸氫鉀、草酸鈉等)進行了研究,反應(yīng)僅需約115min,回收率8310%~11110%,檢測限為016mg/L。用此方法成功測定了COD質(zhì)控標準(QCSPEX-PEM-WP)和英格蘭普利茅斯Tamar河水樣品。

      Yoon-Chang[24]將光催化劑二氧化鈦鋪助紫外光消解與流動分析技術(shù)聯(lián)用測定化學(xué)耗氧量,獲得了好的相關(guān)性。李保新等[25]把化學(xué)發(fā)光系統(tǒng)和流動分析法結(jié)合測定高錳酸鹽指數(shù),有機物在室溫條件下發(fā)生化學(xué)氧化反應(yīng),KMnO4還原為Mn2+并吸附在強酸性陽離子交換樹脂微型柱上,同時過量的MnO-

      4通過微型柱廢棄。吸附在微型

      柱上的Mn2+被洗脫出來使用H2O2發(fā)光體系檢測。若換用職稱論文重鉻酸鐘氧化劑,在酸性條件下,重鉻酸鉀還原生成的Cr(Ⅲ)催化Luminol-H2O2體系產(chǎn)生強的化學(xué)發(fā)光可測定COD。該方法已用于地表水樣COD的測定。

      基于流動技術(shù),綜合電化學(xué)技術(shù)、現(xiàn)代傳感技術(shù)、自動測量技術(shù)、自動控制技術(shù)、計算機應(yīng)用技術(shù)、現(xiàn)代光機電技術(shù)研制的COD在線監(jiān)測儀,一般包括進樣系統(tǒng)、反應(yīng)系統(tǒng)、檢測系統(tǒng)、控制系統(tǒng)四部分。進樣系統(tǒng)由輸液泵、定量管、電磁閥、管路、接口等組成,完成對水樣的采集、輸送、試劑混合、廢液排除及反應(yīng)室清洗等功能;反應(yīng)系統(tǒng)主要有加熱單元或(和)反應(yīng)室,完成水樣的消解和的反應(yīng);檢測系統(tǒng)包括單片機(或工控機)、時序控制和數(shù)據(jù)處理軟件、鍵盤和顯示屏等,完成在線全過程的控制、數(shù)據(jù)采集與處理、顯示、儲存及打印輸

      參考文獻:

      [1]楊婭,艾仕云,李嘉慶等.用MnSO4-Ce(SO4)2協(xié)同催化快速測定COD的研究[J].重慶環(huán)境科學(xué),2003,25(11):30-31.

      [2]RamonRamon,FranciscoValero,Manueldelvalle.Rapiddeterminationofchemicaloxygendemand[J].AnalyticachimicaActa,2003,491:9-109.

      [3]但德忠,楊先鋒,王方強,等.COD測定的新方法-微波消解法[J].理化檢驗-化學(xué)分冊,1997,33(3):135-136.

      [4]但德忠,分析測試中的現(xiàn)代微波制樣技術(shù)[M].成都:四川大學(xué)出版社,2003年.

      篇(3)

      化學(xué)需氧量(COD)是評價水體污染的重要指標之一。COD測定的主要方法有高錳酸鹽指數(shù)法(GB11892 - 89)和重鉻酸鉀氧化法(GTB11914 -89) 。高錳酸鹽指數(shù)法適用于飲用水、水源水和地面水的測定。重鉻酸鉀氧化法(CODCr )適用于工業(yè)廢水、生活污水的測定,但此法要消耗昂貴的硫酸銀和毒性大的硫酸汞,造成嚴重的二次污染,且加熱消解時間長、耗能大,缺點十分明顯,已不適應(yīng)我國環(huán)境保護發(fā)展的需求。為此,人們從不同方面進行了改進。

      1 標準法的改進

      1.1 消解方法的改進

      為縮短傳統(tǒng)的回流消解時間,早期進行的工作包括密封消解法、快速開管消解法、替代催化劑的選擇等;近期的工作主要包括采用微波消解法、聲化學(xué)消解法、光催化氧化法等新技術(shù)。

      1.1.1替代催化劑的研究 重鉻酸鉀法所用的催化劑Ag2 SO4 價格昂貴,分析成本高。因此,畢業(yè)論文研究Ag2 SO4 的替代物,以求降低分析費用有一定的實用性。如以MnSO4 代替Ag2 SO4 是可行的,但回流時間仍較長。Ce ( SO4 ) 2 與過渡金屬混合顯示出很好的協(xié)同催化效應(yīng),如以MnSO4 - Ce ( SO4 ) 2復(fù)合催化劑代替Ag2 SO4[ 1 ] ,測定廢水COD,不但可降低測定費用,還可降低溶液酸度和縮短分析時間,與重鉻酸鉀法無顯著差異。

      1.1.2微波消解法 如微波消解無汞鹽光度法測定COD;微波消解光度法快速測定COD;無需使用HgSO4 和Ag2 SO4 測定COD 的微波消解法;氧化鉺作催化劑微波消解測定生活污水COD 等。Ramon[ 2 ]等采用聚焦微波加熱常壓下快速消解測定COD。

      與標準回流法相比,微波消解時間從2h縮短到約10min,且消解時無需回流冷卻用水,耗電少,試劑用量大大降低,一次可完成12 個樣品的消解,減輕了銀鹽、汞鹽、鉻鹽造成的二次污染[ 3 ] 。專著[ 4 ]對此作了較全面的總結(jié)。

      1.1.3聲化學(xué)消解法 盡管微波消解時間短,但消解完后要等消解罐冷卻至室溫仍需一定時間。而超聲波消解方便,設(shè)備簡單,且不受污染物種類及濃度的限制,近年來已有一些應(yīng)用研究[ 5 ] 。鐘愛國[ 6 ]使用自制的聲化學(xué)反應(yīng)器對不同水樣進行了聲化學(xué)消解試驗,提高了分析效率,減少了化學(xué)試劑用量, COD 測定范圍150mg ·L - 1 ~ 2000mg·L - 1 ,標準偏差≤615% ,加標回收率96% ~120%。超聲波消解時,超聲波輻射頻率和聲強是兩個重要的影響因素。試驗表明,超聲波輻射標準水樣30min 時, 低頻( 20kHz) 、適當高的聲強(80W·cm- 2 )有利于水樣的完全消化。

      1.1.4光催化氧化法 紫外光氧化快速、高效,在常溫常壓下進行,不產(chǎn)生二次污染,因此對水和廢水分析的優(yōu)勢特別突出。近幾年來,半導(dǎo)體納米材料作為催化劑消除水中有機污染物的方法已引起了人們的廣泛關(guān)注。當用能量等于或大于半導(dǎo)體禁帶寬度(312eV)的光照射半導(dǎo)體時,可使半導(dǎo)體表面吸附的羥基或水氧化生成強氧化能力的羥基自由基( ·OH) ,從而使水中的有機污染物氧化分解。艾仕云等[ 7 ]提出納米ZnO 和KMnO4協(xié)同氧化體系,并據(jù)此建立了測定COD 的方法,所得結(jié)果的可靠性和重現(xiàn)性與標準法相當。他們還使用K2 Cr2O7 氧化劑、納米TiO2 光催化劑測定COD[ 8 ] 。通過光催化還原K2 Cr2O7 生成的Cr3 +濃度變化,可以獲得樣品的COD值。但反應(yīng)仍需恒溫攪拌,反應(yīng)液需離心過濾。操作煩瑣,且不能在線快速分析。

      1.2 測定方法的改進

      1. 2. 1分光光度法 分光光度法測定COD是在強酸性溶液中過量重鉻酸鉀氧化水中還原性物質(zhì), Cr6 +還原為Cr3 + ,英語論文利用分光光度計測定Cr6 +或Cr3 +來實現(xiàn)COD 值測定。Inaga 等以Ce ( SO4 ) 2作氧化劑,加熱反應(yīng)后測定吸光度,計算出COD值。Konno使用自制的比色計與PC機相聯(lián)測定COD,所得結(jié)果與標準法基本一致。光度法測得COD值快速、準確、成本低等。目前,國內(nèi)外不少COD快速測定儀均是基于光度法原理。如美國HACH公司制造的COD測定儀是美國國家環(huán)保局認可的COD測量方法。

      1. 2. 2電化學(xué)分析法

      (1)庫侖法 庫侖法是我國測定COD的推薦方法,該法利用電解產(chǎn)業(yè)的亞鐵離子作庫侖滴定劑進行庫侖滴定, 根據(jù)消耗的電量求得剩余K2 Cr2O7 量,從而計算出COD。廣州怡文科技有限公司和中國環(huán)境監(jiān)測總站研制的EST22001COD在線自動監(jiān)測儀,采用庫侖滴定原理,測量范圍5mg/L~1000mg/L;測量時間30min~60min,測量誤差≤±5% FS;重復(fù)誤差≤±3%FS,與手動分析具有很好的相關(guān)性。

      (2)電解法 此法既不外加氧化劑,也不加熱消解水樣,而是利用電化學(xué)原理直接測量水中有機物的含量,是COD測定方法的突破。方法原理基于特殊電極電解產(chǎn)生的羥基自由基( ·OH)具有很強的氧化能力,可同步迅速氧化水中有機物,較難氧化的物質(zhì)(如煙酸、吡啶等)也均能被·OH氧化。羥基自由基被消耗的同時,工作電極上電流將產(chǎn)生變化。當工作電極電位恒定時,電流的變化與水中有機物的含量成正比關(guān)系,通過計算電流變化便可測量出COD 值。作者在這方面作了一些探索工作,取得了初步的結(jié)果[ 9, 10 ] 。由于水樣不需消解,極大縮短了分析流程,還克服了傳統(tǒng)方法中“二次污染”的問題。目前,這類儀器代表產(chǎn)品是德國LAR公司的Elox100A型COD在線自動監(jiān)測儀h[ 11 ] 。儀器測量范圍從1mg/L~10000mg/L,最大可到100000mg/L,測量周期2min~6min。此儀器在歐美各國已得到較廣泛的應(yīng)用,在我國也獲得國家質(zhì)量監(jiān)督檢疫總局計量器具型式批準證書。

      (3)其他電化學(xué)分析法 Dugin[ 12 ]提出以Ce( SO4 ) 2 為氧化劑,利用pH電極和氧化還原電極直接測定電勢從而測定COD 值的方法。Belius2tiu[ 13 ]以兩種不同的玻璃電極組成電池,通過直接測定電池電動勢, 對水樣中COD值進行測定。趙亞乾[ 14 ]以一定比例的反應(yīng)溶液回流10min后,冷卻稀釋,用示波器指示終點進行示波電位滴定測定COD。

      Westbroek等[ 15 ]提出Pt - Pt/PbO2 旋轉(zhuǎn)環(huán)形圓盤電極多脈沖電流分析法,通過電化學(xué)方法產(chǎn)生強氧化劑,碩士論文有機污染物在圓盤電極表面直接氧化或與產(chǎn)生的氧化物質(zhì)反應(yīng)而間接被轉(zhuǎn)化。伏安計時電流法和多脈沖計時電流法測COD,可在幾秒中獲得結(jié)果,而且可以在線監(jiān)測。形成的強氧化媒介可使工作電極表面保持清潔。但方法檢測限較高,不適合地表水或輕度污染水的測定。但德忠等[ 16 ]提出混合酸消解和單掃描極譜法快速測COD 的方法。該法基于用單掃描極譜法測定混合酸(H3 PO4 - H2 SO4 )消解體系中過量的Cr6 + ,從而間接測定COD。混合酸消解回流時間只需15min。Venkata等[ 17 ]使用示差脈沖陽極溶出伏安法(DPASV)進行電化學(xué)配位滴定確定有機金屬絡(luò)合物的絡(luò)合能力,從而測定COD。

      1.2.3化學(xué)發(fā)光法 根據(jù)重鉻酸鉀消解廢水后其最終還原產(chǎn)物Cr3 +濃度與COD值成正比關(guān)系,以及在堿性條件下, Luminol - H2O2 - Cr3 +體系產(chǎn)生很強的化學(xué)發(fā)光的原理,文獻[ 18, 19 ]提出一種用光電二極管做檢測器測定水體化學(xué)需氧量的新方法。

      1.2.4紫外吸收光譜法 紫外吸收光譜法是通過測量水樣中有機物的紫外吸收光譜(一般用254nm波長) ,直接測定COD。已有工作表明,不少有機物在紫外光譜區(qū)有很強的吸收,在一定的條件下有機物的吸光度與COD 有相關(guān)性,利用這種相關(guān)性可直接測定COD。這種方法不像COD、總有機碳( TOC)方法那樣明確,但在特定水體中有極高的相關(guān)性,也能真實反映有機物含量。基于紫外吸收原理測定COD 的儀器已有生產(chǎn)。這類方法均不需添加任何試劑、無二次污染、快速簡單,但前提條件是水質(zhì)組成必須相對穩(wěn)定。此方法在日本已是標準方法,但在歐美各國尚未推廣應(yīng)用,在我國尚需開展相關(guān)的研究。

      2 自動在線分析技術(shù)

      流動分析( FA)用于水樣COD的測定可將樣品消解和測定實現(xiàn)一體化,留學(xué)生論文使整個過程實現(xiàn)在線化、自動化。Korinaga[ 20 ]提出以Ce ( SO4 ) 2 為氧化劑,采用空氣整段間隔連續(xù)流動分析法對環(huán)境水樣中的COD進行測定,采樣頻率達90次/h,但需特制的閥,且管長達18m。陳曉青等[ 21 ]提出測定COD的流動注射停流法,系統(tǒng)以微機控制蠕動泵的啟停,并記錄分光光度計檢測到的信號。由于停流技術(shù)的引入,解決了慢反應(yīng)中樣品的過度分散問題。

      Cuesta等[ 22 ]提出COD的微波消解火焰原子吸收光譜- 流動注射分析法。用微波加熱消解樣品,未被樣品中有機物質(zhì)還原的Cr6 +保留在陰離子交換樹脂上, Cr6 +經(jīng)洗脫后用火焰原子吸收光譜法測定。這種方法在檢測中沒有基體效應(yīng)的影響。

      盡管流動注射分析的優(yōu)勢突出,但仍免不了傳統(tǒng)加熱方式。為了提高在線消解效率,不得不加長反應(yīng)管或采用停留技術(shù),這又導(dǎo)致分析周期延長或低的采樣頻率。醫(yī)學(xué)論文微波在線消解效果雖好,但去除產(chǎn)生的氣泡使流路結(jié)構(gòu)復(fù)雜化。但德忠等[ 23 ]將流動注射和紫外光氧化技術(shù)引入高錳酸鹽指數(shù)的測定中,建立了紫外光催化氧化分光光度法測定高錳酸鹽指數(shù)的流動分析體系,并對多種標準物質(zhì)(葡萄糖、鄰苯二甲酸氫鉀、草酸鈉等)進行了研究,反應(yīng)僅需約115min,回收率8310%~11110%,檢測限為016mg/L。用此方法成功測定了COD質(zhì)控標準(QCSPEX - PEM - WP)和英格蘭普利茅斯Tamar河水樣品。

      Yoon - Chang[ 24 ]將光催化劑二氧化鈦鋪助紫外光消解與流動分析技術(shù)聯(lián)用測定化學(xué)耗氧量,獲得了好的相關(guān)性。李保新等[ 25 ]把化學(xué)發(fā)光系統(tǒng)和流動分析法結(jié)合測定高錳酸鹽指數(shù),有機物在室溫條件下發(fā)生化學(xué)氧化反應(yīng), KMnO4 還原為Mn2 +并吸附在強酸性陽離子交換樹脂微型柱上,同時過量的MnO-

      4 通過微型柱廢棄。吸附在微型

      柱上的Mn2 + 被洗脫出來使用H2O2 發(fā)光體系檢測。若換用職稱論文重鉻酸鐘氧化劑,在酸性條件下,重鉻酸鉀還原生成的Cr ( Ⅲ)催化Luminol - H2O2 體系產(chǎn)生強的化學(xué)發(fā)光可測定COD。該方法已用于地表水樣COD的測定。

      基于流動技術(shù),綜合電化學(xué)技術(shù)、現(xiàn)代傳感技術(shù)、自動測量技術(shù)、自動控制技術(shù)、計算機應(yīng)用技術(shù)、現(xiàn)代光機電技術(shù)研制的COD 在線監(jiān)測儀,一般包括進樣系統(tǒng)、反應(yīng)系統(tǒng)、檢測系統(tǒng)、控制系統(tǒng)四部分。進樣系統(tǒng)由輸液泵、定量管、電磁閥、管路、接口等組成,完成對水樣的采集、輸送、試劑混合、廢液排除及反應(yīng)室清洗等功能;反應(yīng)系統(tǒng)主要有加熱單元或(和)反應(yīng)室,完成水樣的消解和的反應(yīng);檢測系統(tǒng)包括單片機(或工控機) 、時序控制和數(shù)據(jù)處理軟件、鍵盤和顯示屏等,完成在線全過程的控制、數(shù)據(jù)采集與處理、顯示、儲存及打印輸 參考文獻

      [ 1 ] 楊婭,艾仕云,李嘉慶等. 用MnSO4 - Ce ( SO4 ) 2 協(xié)同催化快速測定COD的研究[ J ]. 重慶環(huán)境科學(xué), 2003, 25(11) : 30 - 31.

      [ 2 ] Ramon Ramon, Francisco Valero ,Manuel del valle. Rapid determination of chemical oxygen demand [ J ]. Analy tica chim ica Acta, 2003, 491: 9 - 109.

      [ 3 ] 但德忠,楊先鋒,王方強,等. COD測定的新方法- 微波消解法[ J ]. 理化檢驗- 化學(xué)分冊, 1997, 33 ( 3) :135 - 136.

      [ 4 ] 但德忠,分析測試中的現(xiàn)代微波制樣技術(shù)[M ]. 成都:四川大學(xué)出版社, 2003年.

      [ 5 ] AntonioCanals,M. del Remedio Hernandez. Ultrasound- assisted method for determination of chemical oxygen demand [ J ]. Analy tical and B ioanalyical Chem istry ,2002, 374 (6) : 1132 - 1140

      主站蜘蛛池模板: 精品免费久久久久久久| 日本一区二区三区精品中文字幕| 国产欧美日韩综合精品一区二区| 亚洲国产综合91精品麻豆| 国产精品电影在线| 国产精品美女一区二区视频 | 国产精品无套内射迪丽热巴| 欧美精品播放| 国产精品手机在线观看你懂的| 精品亚洲一区二区| 91国内外精品自在线播放| 少妇精品久久久一区二区三区| 亚洲?V乱码久久精品蜜桃| 精品国产毛片一区二区无码| 四虎国产精品免费久久5151| 99国产精品永久免费视频| 久久久无码人妻精品无码| 亚洲线精品一区二区三区| 无码AV动漫精品一区二区免费| 国产欧美一区二区精品性色99| 99精品国产成人一区二区| 日本精品不卡视频| 国内精品手机在线观看视频| 2022国产精品不卡a| 国产成人精品2021| 国产精品99久久免费观看| 久久精品国产久精国产思思| 欧美日韩人妻精品一区二区在线| 中文精品99久久国产 | 久久国产乱子伦免费精品| 亚洲精品自产拍在线观看| 午夜三级国产精品理论三级| 久久精品视频91| 久久精品国产黑森林| 久久精品国产精品亚洲艾草网美妙| 国语自产精品视频| 久久精品国产第一区二区| 久久精品国产精品亚洲人人| 久久久99精品成人片中文字幕 | 日韩精品成人a在线观看| 亚洲国产精品尤物yw在线|