緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的11篇混凝土裂縫論文范文,希望它們能為您的寫作提供參考和啟發。
鋼筋混凝土的裂縫控制問題是建筑工程中很重要的問題之一,現澆混凝土樓板裂縫是公認的建筑施工中最難解決的問題之一,這些裂縫不僅影響建筑物的美觀,而且影響建筑物的使用功能,大大降低了房屋結構的耐久性;破壞結構的整體性、降低其剛度;引起鋼筋腐蝕。因此如何解決這種常見的混凝土裂縫,是設計者和施工者都不可忽視的問題。
一、裂縫表現
斜向裂縫:多分布在房屋外墻轉角所在房間的樓板上,裂縫一般成45o斜向,有時一只角同時出現兩條裂縫,裂縫基本上為上下貫通。如某七層框架商住樓工程,結構總長度約為100m,設有兩道溫度縫,其基礎一側為條形基礎,其余為獨立承臺基礎。在工程交接時后兩個月左右突然發現在靠其中一條溫度縫的一跨柱角樓板有45。裂縫,從三層至六層樓板每層均有3條,但均未貫穿樓板。
縱橫向裂縫:主要表現為縱橫向裂縫。如某教學樓,其現澆鋼筋混凝土樓板大面積出現寬度0.1-0.3mm不等的縱橫向裂縫。
表面龜裂:此類裂縫主要表現在施工過程中產生的裂縫,容易控制與處理。如某在建工程,因板面面積大,在晚上澆混凝土,第二天早上派人澆水,但前面澆,后面就干掉,到中午時板面出現龜裂縫,用肉眼可辯識。
二、混凝土樓板裂縫產生的原因
1.混凝土組成材料的影響
(1)水泥方面的影響:水泥的收縮值般取決于C3A、SO3、石膏的含量及水泥細度等。即C3A含量大,細度較細的水泥收縮較大。石膏含量不足的水泥,具有較大的收縮,而SO3的含量對混凝土收縮的影響顯著。
(2)骨料方面的影響:混凝土收縮隨骨料含量的增加而減小,隨骨料彈性模量的增加而減小,同時,又隨骨料中粘土含量的增加而增大。另外,在預拌混凝土中,其骨料的級配不十分合理也是造成混凝土出現裂縫的主要因素。
(3)混凝土配合比方面的影響:包括單位用水量,單位水泥用量,水灰比,砂率及灰漿比等參數。混凝土收縮主要取決于單位用水量和水泥用量,而用水量的影響比水泥用量大;在用水量一定的條件下,混凝土干縮隨水泥用量的增大而增加,但增大的幅度較小;在骨灰比一定條件下,混凝土干縮隨水灰比的增加而明顯增大;在配合比相同條件下,混凝土干縮隨砂率的增大而加大,但增大的幅度較小。
(4)外加劑的種類和摻量方面的影響:摻用化學外加劑會使混凝土收縮有不同程度的增大。摻減水劑用于改善混凝土和易性,增大坍落度時,摻減水劑的混凝土收縮略大于不摻的收縮值;摻減水劑用于減水,提高強度或節約水泥時,摻減水劑混凝土的收縮接近或小于不摻的收縮值。
2.施工方面的原因
(1)水灰比的變化對混凝上強度值的影響十分明顯,基本上分別是水和水泥量變動對強度影響的疊加,故此,水、水泥、外加劑的計量變化,將直接影響混凝土的強度。對于大流動性的混凝土,其塑性收縮值為200×l0-4,中等流動性混凝土,其塑性收縮值約為(60~100)×l0-4。表現較明顯的是:滿足坍落度大、流動性好的泵送條件的泵送混凝土,較易產生粗骨料少、砂漿多的現象,混凝土脫水凝固時,就會較易產生塑性收縮裂縫。
(2)混凝土是由砂、石、水泥等粗細骨料按一定的配合比,經過水化反應而形成的水硬性膠凝材料,如果混凝土材料中的砂、石顆粒級配不好,則澆灌出的混凝土強度將降低,抵抗外界應力的能力也同時減弱,極易造成混凝土裂縫。
(3)施工過程中過分振搗混凝土后,粗骨料沉落,水、空氣被擠出,混凝土表面因泌水而形成豎向體積縮小沉落,從而成表面砂漿層,它比下層混凝土有較大的干縮性能,待水分蒸發后,容易形成塑性收縮裂縫。
(4)模板、墊層在澆筑混凝土前淋水不足,過分干燥,澆筑混凝土后,因模板吸水量大,導致混凝土的收縮,產生塑性收縮裂縫。
(5)工程施工中各工種交叉作業,樓面負筋位置的正確性難以得到有效的保證,經踩踏后將令鋼筋彎曲、變形,減低了部分板負筋的有效高度,使該位置鋼筋混凝土樓板上部抗拉能力大幅降低,從而導致該部混凝土樓板出現裂縫。
(6)澆筑混凝土后過分抹平壓光,會使較多的細骨料浮到混凝土表面,形成含水量很大的水泥漿層。空氣中的二氧化碳與水泥漿中的氫氧化鈣發生作用生成碳酸鈣,其化學反應式為CO2+Ca(OH)2=CaCO3+H20,于是澆筑硬化后期(56d后)引起混凝土明顯收縮,即碳化收縮,導致混凝土樓板出現裂縫。(7)混凝土的保濕養護對其強度增長和各類性能的提高十分重要,特別是早期的妥善養護可以避免表面脫水,并大量減少混凝土初期收縮裂縫的產生。過早的養護會影響混凝土的膠結能力;而過遲的養護,混凝土會因受日曬風吹令其表面游離水分過快蒸發,水泥由于缺乏必要的水化水,從而產生急劇的體積收縮(據有關資料反映,當混凝土表面的水分蒸發率超過0.5kg/m2*h時,混凝土體積將急劇收縮),此時的混凝土早期強度低,未能抵抗該種收縮應力而產生開裂。特別是在夏、冬兩季,因晝夜溫差較大,養護不當最容易產生溫差裂縫。
三、混凝土裂縫的控制措施
(1)優選水泥品種。混凝土結構引起裂縫的主要原因之一是由于水泥水化熱的大量積聚致使混凝土出現早期升溫及后期降溫而產生的溫差變化,為此,在施工中可采取一些措施,如選用礦渣水泥、粉煤灰水泥等低熱水泥品種來配制混凝土。
(2)控制材料的使用。根據施工的具體條件降低水灰比,減少水的用量,提高混凝土的密實度,可以減少混凝土的泌水、離析等現象,使混凝土的收縮變形減小。施工時盡可能選用良好的顆粒級配方案,用顆粒級配大的粗中砂來拌制混凝土,嚴格控制砂、石中的含泥量。另外,還應控制施工工期,盡量不要在高溫季節施工,可減少溫差應力對混凝土變形的影響。
(3)提高操作水平。加強混凝土振搗,可以提高混凝土的密實性和抗拉強度;加強對混凝土成品的保護和養護,避免溫差裂縫的產生;對已澆筑好的混凝土應在澆筑后lO到12小時內及時做好澆水養護,以使混凝土有足夠的濕度保持水化反應,并且連續養護日期一般不少于半個月。這樣,不僅有利于混凝土在規定齡期內達到設計要求的強度,而且還可以在養護時降低混凝土的表面溫度,減少混凝土內部的約束作用,防止收縮裂縫的產生。
(4)控制鋼筋位置。在綁扎構造鋼筋時為防止鋼筋走位,可以用一些技術措施進行控制,從而有效地控制和減少板面裂縫的發生。
四、混凝土裂縫處理
依據混凝土裂縫寬度,深度以及擴展情況,采取不同的處理方法。
(一)對于淺表面裂縫(沉縮裂縫,干縮裂縫),縫寬小于0.5m,可用下列方法:
1.裂縫表面清理干凈,用水泥漿刮抹。
2.稍深一些的裂縫,沿裂縫鑿去薄弱部分,用水沖洗后,用1:2水泥砂漿修補。
(二)裂縫較深(10mm以上)
1.注射環氧樹脂黏合劑。注射前,用電吹風吹干裂縫,然后用注射器把黏合劑緩慢注入,至全部充滿。
近年來,伴隨著城市化建設和現代工程技術的蓬勃發展,現澆鋼筋混凝土結構的建筑在各種規模城市得到了廣泛應用。與此同時現澆樓板解決了以往工程中預應力空心板拼縫縱裂縫的質量通病,加強了結構抗震性能,但在現澆鋼筋混凝土樓板的施工中也遇到不少新的問題。現澆結構樓板的裂縫,就是其中比較常見且又難以解決的工程實際問題之一。針對這個質量通病,根據多年來的實踐施工經驗和教訓,對其形成原因及控制作一下簡要分析。
1現澆混凝土樓板裂縫原因分析
現澆樓板產生裂縫的原因很多,可以從設計、混凝土原材料和施工條件這三方面來歸納分析。
1.1設計方面
從住宅工程現澆混凝土樓板裂縫發生的部位分析,最普遍的是房屋四周陽臺處的房間在離開陽角1m左右,即在樓板配置的負彎矩筋以及角部放射筋末端或外側發生45度左右的樓板斜角裂縫,這在現澆樓板任何一種類型的建筑中都普遍存在。主要是混凝土的收縮特性和溫差沉降等作用所引起,并且越靠近最頂層處的樓板往往越大。從設計角度看,現行設計規范側重于強度,對溫差和混凝土收縮特性等多種因素綜合考慮不足,配筋構造量達不到要求。而房屋的四周陽角由于受到縱、橫兩個方向剪力墻或剛度相對較大的梁約束,限制了樓板的自由變形,因此在溫差和混凝土收縮變化時,樓板在配筋薄弱處首先一裂,產生45度左右的斜角裂縫。雖然樓板斜角裂縫對結構安全使用沒有影響,但在有水源的情況下產生滲漏缺陷,易引起住戶投訴,是裂縫防治的重點。
1.2混凝土原材料質量方面
材料質量問題引起的樓板裂縫較常見的原因是水泥、砂、石等質量不好,應嚴格控制原材料質量和配合比,避免材料不良引起的裂縫。
1.2.1水泥。水泥水化熱是混凝土產生溫度應力的主要因素,宜選擇中熱或低熱的水泥品種,嚴禁使用安定性不穩定的水泥,因水泥中含有生石灰或氧化鎂,這些成分在和水化合后產生積膨脹,產生裂縫。
1.2.2如果骨料中含泥量過多,則隨著混凝土的干燥,會產生不規則的網狀裂縫。
1.2.3堿-骨料反應:混凝土在固化以后,其內部所含的堿與其砂、石骨料中所含的堿活性物質將發生一種化學反應。化學反應以后將產一種膠凝物質,而此種膠凝物質吸收水分會發生膨脹,盡管這一過程比較緩慢,但最終將造成混凝土樓板的裂縫。
1.2.4水灰比、塌落度過大,或使用過量細砂。混凝土強度值對水灰比的變化十分敏感,基本上是水泥等膠凝材料計量變動對強度影響的疊加。因此,水、水泥、外摻混合材料外加劑溶液的計量偏差,將直接影響混凝土的強度。而采用含泥量大的細砂配制的混凝土收縮大,抗拉強度低,容易因塑性收縮而產生裂縫,泵送混凝土為了滿足泵送的條件:塌落度大,流動性好,易產生局部粗骨料少,砂漿多的現象,此時,混凝土脫水干縮時,就會產生表面裂縫。
1.3施工條件方面
1.3.1在現澆混凝土樓板中,我們還常常發現一種沉陷裂縫。產的原因:由于模板支撐剛度不夠,梁板支撐剛度差異或模板撓度過大,在荷載作用下變形沉陷;其次是施工過程中的過度震動使支撐剛度變異部位多次發生瞬間相對位移,或者在混凝土還未獲得足夠強度之前就過早地拆模。
1.3.2目前大型和高層建筑施工中,利用跨度較大的施工現澆樓板通過豎向支撐變為短跨受力狀態,達到早拆模板的支撐體系,以便提高模板利用率的目的。通過大量工程實踐證明,早拆模會出現斷斷續續的細小裂縫,在個別位置有的細小裂縫十分明顯。
1.3.3施工中未能及時測定混凝土強度,模板在拆除前應對相應部位混凝土的同條件試塊進行抗壓強度試驗,混凝土強度達到28天設計值時才能拆除模板,而實際施工中,往往人為地規定混凝土的拆模時間,不對混凝土強度進行測試,也未進行水泥、粗細骨料品種、外加劑類型等自身特性和氣溫等環境條件的綜合考慮。
樓板施工時,拆模后樓板立刻承受較大的集中荷載,如堆放鋼筋、堆放加氣混凝土塊或空心磚等。這些荷載的集中堆放,超過了控制荷載范圍,導致支撐系統負彎矩超過混凝土的開裂彎矩,產生裂縫。
1.3.4針對以上問題應采取的措施
模板與支撐系統要有足夠的剛度。樓板模板支撐的間距要適宜,使其剛試想與梁的模板剛度不至于有太大的差距。
對于高層及小高層住宅中,對多跨連續板邊跨的板邊往往簡化處理為簡支,這就需要設計人員或施工管理者在施工過程中在構造上予以配置構造鋼筋補充強度,所配置的構造鋼筋對應的直徑不能過細,間距不能過大。同時也建議設計部門、設計者對邊跨支座配筋時按固定端考慮邊支點,對該跨跨中及內支座配筋時邊支座仍可按簡支考慮,并適當增大板邊的構造配筋率。在施工中做好上部鋼筋的保護作用,以防施工時被踩踏到下部,上部鋼筋直徑應大于10-12mm,最好采用冷軋帶肋鋼筋。在房屋角部及柱的四周板面適當配置防45度裂縫的放射構造鋼筋。
若想提早拆模,可在樓板混凝土中摻用復合高效減水早強劑,7天強度可達到90%。
對于早期拆模板的支撐系統,應嚴格控制樓板混凝土的拆模強度和早拆模后樓板上的施工荷載。在資金允許的情況下,宜配兩個流水段的早拆模板,以適應小段的流水的作業方式,也有利于適應快速施工中的現澆樓板的工序、工藝的銜接。
2施工管理控制
2.1根據設計方面原因分析,建議業主和設計單位對四周的陽角處樓板配筋進行加強,負筋應由分離式切斷,改為沿房間全長配置,并且適當加密加粗。多年來的實踐充分證明,凡采納或按上述設計方法的房屋,基本上不再發生45度斜角裂縫,已能較滿意地解決好樓板裂縫中的主要矛盾,效果顯著。
2.2商品混凝土已被廣泛應用于建筑施工中,它的現場質量控制,直接影響到施工后結構的質量。但由于交通不便等多種原因,從攪拌站裝運商品混凝土至施工現場需要較長時間。這樣混凝土的塌落度損失很大,夏季高溫損失就更大,再加上施工管理不嚴、常常出現隨意向已預拌好的混凝土中加水的現象,嚴重影響了混凝土拌合物的質量,造成混凝土水灰比增大,混凝土離析,同時增加了混凝土硬化,漿體的空隙率增大,削弱了混凝土中水泥和骨料的界面粘結力,為產生混凝土裂縫留下了隱患。
2.3由于施工管理不當,在樓板近支座處的上部負彎矩鋼筋綁扎結束后,樓板混凝土澆筑前,部分上部鋼筋常被工作人員踩踏下沉,又未得到及時糾正,使其不能有效發揮抵抗外荷載的能力,裂縫就容易出現。
2.4混凝土施工完成后,待強度達到要求方能進行下一道工序的施工。在混凝土終凝初期應避免施工荷載對樓板產生較大的震動。但在搶工期階段,在混凝土澆筑后第二天就上人上材料進行下道工序施工,而導致混凝土裂縫的產生。
2.5混凝土的養護對其強度增長和各類性能的提高十分重要,特別是早期的妥善養護可以避免表面脫水并大量減少混凝土初期伸縮裂縫發生。但實際施工中由于搶趕工期和澆水將影響彈線及施工人員作業,因此樓面混凝土往往缺乏較充分和較足夠的澆水養護延續時間。為此,施工中必須堅持覆蓋麻袋或草包進行一周左右的妥善養護,并建議采用噴HL等品種和養護液進行養護,達到降低成本和提高工效,并可避免或減少對施工的影響。
結論
現澆混凝土樓板容易出現的非結構性的裂縫雖然是一種常見的建筑質量通病,但經過分析研究和施工總結,已經積累了比較豐富的防裂經驗。只要我們加強混凝土樓板的施工工藝的管理,嚴格按照施工規范、規程操作,就能大大減少混凝土樓板裂縫的產生,從而保證混凝土樓板的施工質量,并能為企業贏得良好信譽。
由于裂縫的存在和發展通常會使內部的鋼筋等材料產生腐蝕,降低鋼筋混凝土材料的承載能力、耐久性及抗滲能力,影響建筑物的外觀、使用壽命等。因而防止樓板開裂已經成為大家共同關心的課題,本文試從施工的角度出發,探討樓板裂縫產生的原因以及防治措施。
一、樓板裂縫的開展大多有以下幾種情況
(一)裂縫在板面沿樓板支座邊300mm范圍內平行于支座開展,甚至板的四周都出現裂縫并且連續;
(二)在板角處裂縫與相鄰兩支座成45度角展開;
(三)與施工井架位置相接的樓板常出現裂縫。
這些裂縫大多在工程竣工后一段時間才被發現,往往這時樓板還幾乎沒有使用荷載。有時裂縫寬度在水泥沙漿找平層表面被放大了,實際上在混凝土樓板的裂縫寬度大多在0.3mm以下,裂縫的深度在15mm左右。
二、樓板裂縫的原因主要有以下幾種
(一)干縮裂縫
混凝土干縮主要和混凝土的水灰比、水泥的成分、水泥的用量、骨料的性質和用量、外加劑的用量等有關。硬化混凝土在約束條件下的干縮是樓板產生裂縫的一個比較常見的原因。水泥的水化或混凝土中水分的蒸發會引起混凝土干縮。此外,樓板混凝土的收縮也受到結構的另一部分(如混凝土梁、柱)的約束而引起拉應力,拉應力超過混凝土抗拉強度時混凝土將會產生裂縫,并且能夠在比開裂應力小得多的應力作用下擴展延伸。
(二)塑性收縮裂縫
塑性收縮是指混凝土在凝結之前,表面因失水較快而產生的收縮。其產生的主要原因為:混凝土在終凝前幾乎沒有強度或強度很小,或者混凝土剛剛終凝而強度很小時,受高溫或較大風力的影響,混凝土表面失水過快,造成毛細管中產生較大的負壓而使混凝土體積急劇收縮,而此時混凝土的強度又無法抵抗其本身收縮,因此產生龜裂。
(三)支撐沉陷裂縫
新澆混凝土樓板容易在模板、支撐變形的情況下產生裂縫。由于支撐的剛度不足或梁板支撐剛度差異較大,在荷載作用下變形沉陷,施工期間的過度震動使支撐剛度變異部位多次瞬間相對位移以及過早拆模等等都可能使混凝土在發展足夠強度以支撐其自身重量之前產生裂縫。沉陷變形也是混凝土樓板裂縫開展的另一個常見原因。
(四)溫度裂縫
混凝土澆筑后,在硬化過程中,水泥水化產生大量的水化熱,由于混凝土的體積較大,大量的水化熱聚積在混凝土內部而不易散發,導致內部溫度急劇上升,而混凝土表面散熱較快,這樣就形成內外的較大溫差,較大的溫差造成內部與外部熱脹冷縮的程度不同,使混凝土表面產生一定的拉應力,當拉應力超過混凝土的抗拉強度極限時,混凝土表面就會產生裂縫。
(五)化學反應引起的裂縫
堿骨料反應裂縫和鋼筋銹蝕引起的裂縫是鋼筋混凝土結構中最常見的由于化學反應而引起的裂縫。
就施工因素來說,樓板的模板、支撐變形或沉陷,混凝土的制作和搗實工藝等許多方面的施工質量問題以及缺乏養護都會增加產生裂縫或引致裂縫發展的可能性。因此,裂縫的發生和延伸開展與混凝土內在的特性和多種施工因素可能同時存在某種關系。也就是說,同一條裂縫的開展往往由多個原因所造成。
三、針對裂縫產生的原因,在施工因素方面采取相應措施,以減少樓板裂縫的產生。為此,在混凝土施工中,在工序和工藝方面應當注意下列幾個問題
(一)嚴格控制混凝土攪拌和施工中的配合比,混凝土的用水量絕對不能大于配合比設計所給定的用水量,混凝土應使用設計允許的最小水泥用量和能滿足和易性要求的最小用水量,設備允許情況下,不要用過大的塌落度。使用各種外加劑時要注意,盡量不要選用增加混凝土干縮的外加劑;選擇合適的水泥品種,使混凝土收縮減少,凝固時間合適;混凝土內砂石水泥的級配力求最優。(二)澆筑混凝土之前,將模板澆水均勻濕透。
(三)模板及其支撐系統要有足夠的剛度,且支撐牢固,并使地基受力均勻。樓板模板支撐的間距要適宜,使樓板模板剛度與梁模板剛度不至于相差太大。在與施工井架相接的或施工運輸頻繁經過的樓板模板中適當加強模板支撐系統。
(四)了解預拌混凝土的級配情況,對某些級配的混凝土,不要過度振搗樓板混凝土,過度的振搗會使混凝土產生離析和泌水,使混凝土樓板表面形成水泥含量較多的沙漿層和水泥漿層,容易產生干縮裂縫。由于一般樓板的厚度不大,使用平板振動器勻速拖過一次就可使樓板的混凝土成型密實。要在混凝土沉淀收縮基本完成后才開始樓板的最終抹面。
(五)在樓板的混凝土施工完成后,要等樓板混凝土有一定的強度后才進行下一道工序的施工。在混凝土終凝初期應避免施工荷載對樓板產生較大的震動。特別是與施工井架相接的樓板,其混凝土施工完成是最后的,而上施工荷載受震動是最早和最頻繁的。有些施工單位為了搶工期,在樓板混凝土搗制完成后第二天就上人上材料進行下一道工序施工,往往導致這位置的樓板多處產生裂縫。
(六)施工期間不要過早拆除樓板的模板支架,且要注意拆模的先后次序。必要時可在拆除模板后在適當位置上安裝回頭頂。施工機具和材料不要集中堆放在一塊樓板上,避免造成較大的荷載使還未達到強度的混凝土樓板產生裂縫。
(七)了解預拌混凝土的收縮曲線,加強混凝土養護,保持混凝土樓板表面濕潤。在常溫下養護不少于兩周,特別是在混凝土終凝初期,要嚴格按要求進行澆水養護。養護期后,在施工期間特別干燥的時候也應進行澆水養護。
四、裂縫的處理
修補前需要對樓板裂縫進行檢測與研究以確定裂縫部位、開裂程度和裂縫產生的原因等。根據裂縫的性質和具體情況我們要區別對待、及時處理,以保證建筑物的混凝土裂縫的修補措施主要有以下一些方法:表面修補法,灌漿、嵌逢封堵法,結構加固法,混凝土置換法,電化學防護法以及仿生自愈合法等。
五、結束語
樓板裂縫是混凝土結構中普遍存在的一種現象,它的出現不僅會降低建筑物的抗滲能力,影響建筑物的使用功能,而且會引起鋼筋的銹蝕,混凝土的碳化,降低材料的耐久性,影響建筑物的承載能力,因此要對混凝土樓板裂縫進行認真研究、區別對待,采用合理的方法進行處理,并在施工中采取各種有效的預防措施來預防裂縫的出現和發展,保證建筑物和構件安全、穩定地工作。
參考文獻:
[1]鋼筋混凝土結構設計規范.中國建筑工業出版社,1999.2.
[2]鞠麗艷.混凝土裂縫抑制措施的研究進展.混凝土,2002.5.
混凝土中產生裂縫有多種原因,主要是溫度和濕度的變化,混凝土的脆性和不均勻性,以及結構形式等原因。
混凝土硬化期間水泥放出大量水化熱,內部溫度不斷上升,在表面引起拉應力。后期在降溫過程中,又會在混凝土內部出現拉應力,氣溫的降低也會在混凝土表面引起很大的拉應力。當這些拉應力超出混凝土的抗裂能力時,即會出現裂縫。混凝土的內部濕度變化很小或變化較慢,但表面濕度可能變化較大或發生劇烈變化,如養護不周、時干時濕,表面干縮形變受到內部混凝土的約束,也可能導致裂縫出現。混凝土是一種脆性材料,抗拉強度是抗壓強度的1/10左右,短期加荷時的極限拉伸變形只有(0.6~1.0)×104,長期加荷時的極限位伸變形也只有(1.2~2.0)×104.由于原材料不均勻,水灰比不穩定,及運輸和澆筑過程中的離析現象,在同一塊混凝土中其抗拉強度又是不均勻的,存在著許多抗拉能力很低,易于出現裂縫的薄弱部位。在素混凝土(方塊)內如果結構出現拉應力,須依靠混凝土自身承擔。但是在施工中混凝土由最高溫度冷卻到穩定溫度時間短,往往在混凝土內部引起相當大的拉應力。
一、溫度應力的分析
1.根據溫度應力的形成過程可分為以下三個階段:
(1)早期:自澆筑混凝土開始至水泥放熱基本結束,一般約30天。這個階段的兩個特征,一是水泥放出大量的水化熱,二是混凝上彈性模量的急劇變化。由于彈性模量的變化,這一時期在混凝土內形成殘余應力。
(2)中期:自水泥放熱作用基本結束時起至混凝土冷卻到穩定溫度,這個時期中,溫度應力主要是由于混凝土的冷卻及外界氣溫變化所引起,這些應力與早期形成的殘余應力相疊加,在此期間混凝上的彈性模量變化不大。
(3)晚期:混凝土完全冷卻以后的時期。溫度應力主要是外界氣溫變化所引起,這些應力與前兩種的殘余應力相迭加。
2.根據溫度應力引起的原因可分為兩類:
(1)邊界上沒有任何約束或完全靜止的結構,如果內部溫度是非線性分布的,由于結構本身互相約束而出現的溫度應力。例如,混凝土方塊結構尺寸相對較大,混凝土冷卻時表面溫度低,內部溫度高,在表面出現拉應力,在中間出現壓應力。
(2)結構的全部或部分邊界受到外界的約束,不能自由變形而引起的應力。如方塊的榫槽。
這兩種溫度應力往往和混凝土的干縮所引起的應力共同作用。
3.在的施工中,為了提高模板的周轉率,往往要將方塊盡早拆模。當混凝土溫度高于氣溫時應適當考慮拆模時間,以免引起混凝土表面的早期裂縫。早期拆模,在方塊表面引起很大的拉應力,出現“溫度沖擊”現象。在混凝土澆筑初期,由于水化熱的散發,表面引起相當大的拉應力,此時表面溫度亦較氣溫為高,此時拆除模板,表面溫度驟降,必然引起溫度梯度,從而在表面附加一拉應力,與水化熱應力迭加,再加上混凝土干縮,表面的拉應力達到很大的數值,就有導致裂縫的危險.
加筋對大體積混凝土方塊的溫度應力影響很小,因為加入方塊的混凝土中的含筋率極低。在溫度不太高及應力低于屈服極限的條件下,鋼的各項性能是穩定的,而與應力狀態、時間及溫度無關。鋼的線脹系數與混凝土線脹系數相差很小,在溫度變化時兩者間只發生很小的內應力。由于鋼的彈性模量為混凝土彈性模量的7-15倍,當內混凝土應力達到抗拉強度而開裂時,鋼筋的應力將不超過100-200kg/cm2..因此,在混凝土中想要利用鋼筋來防止細小裂縫的出現很困難。
混凝土方塊內約束
混凝土塊體自身質點之間的約束:大體積混凝土方塊在溫度變化過程中,塊體內溫度分布是不均勻的。塊體表層散發快,表層溫度接近外界氣,而內部積聚的水化熱不易散發,使塊體內部溫度明顯高于表層溫度,內、外溫差不一致,使表層混凝土收縮受到里層混凝土的約束而產生拉應力。
外約束作用越大,相應的溫度應力愈大;內約束產生的溫度應力與塊體內、外溫差愈大,溫度應力也愈大。如果二者產生的拉應力超過混凝土的抗拉強度混凝土都要出現裂縫。方塊A、B、C水泥用量少,水化熱小,且方塊A底部無外約束,所以方塊A不產生裂縫。方塊B、C底部有外約束,當外約束產生的拉應力超過混凝土的抗拉強度就出現裂縫,因此方塊B、C在榫槽處有時出現裂縫,方塊D和卸荷板因有抗凍要求,強度等級高,水泥用量多,水化熱大,且都有外約束(方塊D在底部榫糟處,卸荷板在預留孔處),所以方塊D和卸荷板出現的裂縫比B、C明顯。
外約束
混凝土澆注后,溫度逐漸下降,塊體也隨之收縮。但是在塊體底部(與底胎上的榫相互作用,塊體收縮受到榫的約束,從而在塊體內部產生拉應力。該拉力在混凝土方塊的底部最大,一旦產生裂縫也是從底部開始,隨著收縮的增加和溫度應力的增大,裂縫將向上延伸,有時貫穿整個塊體。》
改進預制混凝土大方塊產生裂縫的措施:
為了防止裂縫,減輕溫度應力可以從控制溫度和改善約束條件兩個方面著手。
1.控制溫度的措施如下:
(1)采用改善骨料級配,砂選用中粗砂,含泥量小于3%,清除泥土和石粉,級配要好,從而可能提高混凝土自身的強度,相對可以減少水泥用量,對克服溫度裂縫有好處。
(2)拌合混凝土時加水或用水將碎石冷卻以降低混凝土的澆筑溫度;
(3)澆注混凝土大方塊時,按規定摻加10-100kg/塊塊石,有助于克服裂縫;
(4)減小混凝土澆注的分層厚度,在條件允許時減緩混凝土澆注速度,以不出現冷縫為原則。熱天澆筑混凝土時減少澆筑厚度,利用澆筑層面散熱;
(5)規定合理的拆模時間,氣溫驟降時進行表面保溫,以免混凝土表面發生急劇的溫度梯度;
(6)在拆除模板后及時在表面覆蓋一輕型保溫材料,如泡沫海棉等,對于防止混凝土表面產生過大的拉應力.
(7)在原有吊裝孔基礎上增加預留孔,大方塊澆注完畢養護時期,吊裝孔和預留孔內的養護水由于水泥水化熱而造成溫度升高,為此,每隔2-3小時孔內換一次水,孔內熱水沿塊體四周流下,既可以降低方塊內部的溫度,減少混凝土內約束作用。
3.使用減水防裂劑,其特點:
(1)混凝土中存在大量毛細孔道,水蒸發后毛細管中產生毛細管張力,使混凝土干縮變形。增大毛細孔徑可降低毛細管表面張力,但會使混凝土強度降低。這就是表面張力理論。
(2)水灰比是影響混凝土收縮的重要因素,使用減水防裂劑可使混凝土用水量減少25%。
(3)水泥用量也是混凝土收縮率的重要因素,摻加減水防裂劑的混凝土在保持混凝土強度的條件下可減少15%的水泥用量,其體積用增加骨料用量來補充。
(4)減水防裂劑可以改善水泥漿的稠度,減少混凝土泌水。
(5)提高水泥漿與骨料的粘結力,提高的混凝土抗裂性能。
(6)混凝土在收縮時受到約束產生拉應力,當拉應力大于混凝土抗拉強度時裂縫就會產生。減水防裂劑可有效的提高的混凝土抗拉強度,大幅提高混凝土的抗裂性能。
(7)摻加外加劑可使混凝土密實性好,可有效地提高混凝土的抗碳化性,減少碳化收縮。
(8)摻減水防裂劑后混凝土緩凝時間適當,在有效防止水泥迅速水化放熱基礎上,避免因水泥長期不凝而帶來的塑性收縮增加。
(9)摻外加劑混凝土和易性好,表面易摸平,形成微膜,減少水分蒸發,減少干燥收縮.
4.混凝土的早期養護
混凝土的早期養護,主要目的在于保持適宜的溫濕條件,以達到兩個方面的效果,一方面使混凝土免受不利溫、濕度變形的侵襲,防止有害的冷縮和干縮。一方面使水泥水化作用順利進行,以期達到設計的強度和抗裂能力。
豐樂水庫大壩為變圓心變半徑的等厚拱混凝土雙曲拱壩,壩頂高程211.0m,壩底最低高程157.0m,最大壩高54.0m;壩頂厚2.5m,壩底厚12.5m,厚高比0.23;壩頂弧長216.15m,壩頂弦長168.2m,弧高比4.0,弦高比3.1。大壩沿拱壩軸線分為16個壩塊,各壩塊寬約12m。拱壩的結構尺寸見表1。
壩頂設有開敞式自由挑流溢洪道,溢流壩段弧長56.1m,堰頂高程204.0m,最大泄量2060m3/s。
大壩于1973年1月開始混凝土澆筑,1976年6月完成大壩混凝土施工,1978年3月大壩橫縫重復灌漿結束,至此,拱壩已形成整體結構,具備蓄水運用條件。但因庫內公路改線工程未能按期完成,為維持屯溪市至黃山的公路交通,壩內放水底孔一直敞開,水庫遲遲不能蓄水。1978年夏季,該地區出現百年不遇的長期高溫干旱氣候,水庫同時處于空庫狀態,致使壩體長期處于空庫+自重+溫升荷載組合下運行。1978年冬季在左、右岸下游壩面分別出現9條和3條裂縫,后于1986年進行了裂縫灌漿處理。
大壩裂縫分布見圖1。圖中裂縫編號1~20系1979~1986年間年出現的,其中有12條裂縫即為1978年冬季在下游壩面產生的(左岸9條、右岸3條);圖中未編號的裂縫是1986~2001年間發展的裂縫。
2壩身裂縫及其發展
2.11986年灌漿前下游壩面裂縫狀況
由于1978年夏季高溫干旱,大壩處于空庫狀態,而拱壩較薄,拱圈曲率又較大,溫度荷載引起拱壩向上游變位,在下游壩面拱座附近產生較大拉應力。1978年5月7日到8月26日,在大壩左岸下游2號壩塊195m高程至6號壩塊165m高程發現裂縫,裂縫基本上平行于岸坡方向,總長度達80m左右,縫寬達1.0mm;右岸12號壩塊175m高程至14號壩塊176.3m高程裂縫沿175m高程水平建筑縫延伸29.35m長。1979年初用環氧樹脂封堵裂縫,當年10月發現裂縫繼續張開并向兩端延伸。1979年12月,南京水利科學研究所用超聲波對大壩左岸下游拱座附近184m高程裂縫進行探測,裂縫深度大于2.3m,該處壩厚6.9m。
由于大壩裂縫未能及時修補,1979年水庫蓄水后至1986年9月,大壩裂縫已發展到20條,總長度達260.8m,在裂縫和橫縫相交處,壩面潮濕、滲水,高水位時局部裂縫有噴射水霧現象。1986年冬季用改性環氧樹脂進行灌漿,共灌了19條裂縫,共計灌入改性環氧樹脂漿液331.2L,灌后縫面不再滲漏,通過超聲波檢測,大多數裂縫的波幅都有很大程度的提高,有的已接近無縫混凝土的波幅。
2.2壩身裂縫的發展
裂縫灌漿后,大壩運行一直比較正常。從1986年至1994年的觀測資料看,左岸壩后裂縫寬度有增大的趨勢,但沒有發現新的裂縫,已灌漿的裂縫也沒有被拉開。
1996年以后,下游壩面陸續發現新的裂縫,下游壩面漏水點增多,至2001年底共發現有40多處漏水點,并拌有白色的氫氧化鈣析出,部分裂縫和橫縫交叉處漏水,且滲水縫段較長,出現新的裂縫。2001年12月14日檢查發現,6號、8號、10號、11號壩塊出現水平裂縫或斜裂縫共6條,總長度28.1m。
2.3壩身裂縫的性狀
通過1979年和1986年分別由南京水科所和蚌埠水科所用超聲波對裂縫進行檢測,裂縫最大深度分別為2.3m和2.14m,縫寬不大于1.0mm,2002年初由淮河流域水工程質量檢測中心對新、老裂縫進行檢測,裂縫寬度為0.05~0.45mm。
從幾次裂縫檢測結果看,豐樂拱壩下游面裂縫均為表面裂縫。
3裂縫原因分析
3.11978年大壩裂縫分析
3.1.1拱壩體型對大壩變形的影響
豐樂拱壩是等厚圓弧拱,拱壩中心角較大,以196m高程拱圈為例,該層拱圈厚6.1m,拱圈中心半徑86.75m,中心角126°。如按目前的扁平拱壩布置,相同壩高處中心角約80°,拱圈中心半徑120.25m。可見,在拱圈厚度相同、跨度相同時,豐樂拱壩拱圈弧長比一般扁平拱壩多22.87m,在拱圈受到相同溫升荷載的作用時,豐樂拱壩拱圈向上游膨脹比一般扁平拱壩要大的多,而豐樂拱壩有六分之五的壩高段的中心角都大于120°,拱圈膨脹使下游壩面拱座附近產生的拉應力相當大。同時,豐樂拱壩是圓弧拱且中心角較大,造成左、右岸坡梁向上游倒懸度達到1∶0.33,在拱壩自重荷載作用下,左、右岸坡下游將產生0.7~0.8MPa的拉應力,并使拱壩產生向上游的變位。
3.1.2下游壩面溫度變化對拱壩應力的影響
豐樂河水在壩址附近由北向南流,拱壩中心線走向為NE18°25′,下游壩面朝南,在夏季高溫期間,陽光直射下游壩面。在空庫期間,上游壩面一直處在陽光照射不到的壩陰下,由于山區晝夜溫差較大,因此上游壩面溫度比下游壩面低得多;而兩岸坡梁又向上游倒懸,下游壩面接收陽光的熱量更多,上、下游壩面溫差更大。下游壩面溫度高于上游壩面,使岸坡梁向上游變形,在自重和溫升荷載作用下,用多拱梁法計算下游壩面的最大拉應力為3.56MPa,該計算結果還未考慮拱壩朝向和實際日照溫差的影響。
綜上所述,豐樂拱壩受體型及方位的制約,在空庫溫升條件下運行必然會產生裂縫。實際運行情況是,1978年8月26日在左、右岸坡發現的裂縫,即由上述原因所造成。因受上部拱圈的約束作用,岸坡梁向上游的變形受到限制,所以受拉裂縫沒有向壩的深部延伸。
3.2后期裂縫發展成因
豐樂拱壩由15條橫縫將大壩分成16個壩塊,每個壩塊的下游面寬度都小于12m。橫縫雖然經過接縫灌漿,但其承受拉應力的能力仍然低于壩身混凝土。從1986年以后壩下游面出現的36條豎向裂縫看,6號壩塊和4號壩塊中部都各有一條長12m和8m的長縫,其余34條豎縫長1~5m,縫寬0.05~0.45mm,縫深均小于2.0m,以上裂縫大多發生在河床至左岸壩塊。從裂縫分布和橫縫位置看,因較大的拱圈拉應力可以通過橫縫釋放,故兩橫縫之間的壩體混凝土不致被拉裂。
豐樂拱壩下游面朝南,拱冠附近壩體向下游倒懸,兩岸是拱座山脊,盛夏高溫期,下午2時至3時,壩下游好似大烤箱,行人不能停留,下游壩面溫度可達55~60℃。壩體內1.0m深處的混凝土溫度達34.6℃,壩面附近的混凝土溫度可能達到40℃以上,而夜晚山谷的溫度可很快降低到30℃以下,壩面下的混凝土溫度則下降較慢,內、外溫差可達20℃以上,由此產生的拉應力,可將壩面混凝土拉裂。由于拱壩中心線為NE18°25′,左岸下游壩面日照時間較長,右岸山脊較高,下午四點鐘以后,右岸壩下即照不到陽光,因此左岸下游壩面溫度應力較大,大壩實際運行也是在左岸壩下出現較多的豎向裂縫。
由上可知,下游壩面后期出現的裂縫多是由壩面的非線性溫差引起的表面裂縫。
4日照對壩面溫度的影響
《混凝土拱壩設計規范》(SD145-85)在關于邊界溫度的確定中規定:下游表面年平均溫度等于年平均氣溫加日照影響,下游表面溫度年變幅等于氣溫年變幅加日照影響(約1~2℃)。規范中對下游壩面溫度的計算,不管下游壩面是朝南還是向北,日照影響都定為1~2℃,對下游壩面朝北的拱壩可能差別不大,但對于下游壩面朝南的拱壩,其日照影響決不是1~2℃。
豐樂拱壩處的年平均氣溫為16.4℃,按規范規定計算下游表面溫度年變幅為18.4℃,按以上溫度荷載,用多拱梁法程序計算,左岸坡梁的拉應力為3.56MPa;而實測的下游壩面內1.0m處混凝土的溫度達34.6℃,靠近壩面處混凝土溫度會更高,因而豐樂拱壩實際承受的溫度荷載應比計算值要大得多,這也是豐樂拱壩前期產生裂縫的重要原因之一。
5預防壩面溫度裂縫的措施
在拱壩設計中,可能會遇到下游壩面朝南的中小型薄拱壩,有類似豐樂拱壩這樣的問題,如處理不好顯然將會在下游壩面出現較多的溫度裂縫。這些裂縫雖然不深,但對薄拱壩來說,裂縫切斷拱圈的深度占拱厚的比例較大,必然會引起拱圈應力的再分配,也可能在縫端產生應力集中,對拱壩安全造成不利,因此防止壩面出現溫度裂縫的問題不可輕視。
從豐樂拱壩實測溫度資料及分析可以看出,夏季日照對壩面溫度的影響不可忽視。較好的解決辦法是在下游壩面貼上保溫層,使每天日照高溫來不及傳到壩面混凝土就到了晚上的降溫時間。中國水利水電科學院研究的發泡聚胺脂保溫層是較好的保溫材料,聚胺脂和混凝土壩面的黏結力為0.1MPa,5~6cm厚的發泡聚胺脂可相當于4.0m厚的混凝土的保溫效果,足以阻止日曬高溫傳至下游壩面,從而使下游壩面溫度能長期保持在夏季的平均溫度。此外,保溫層對冬季氣溫驟降也有很好的防護作用。
6結語
經以上對豐樂拱壩壩面裂縫的分析可知,其1978年發生的裂縫是1978年夏季高溫+空庫+自重荷載組合引起的,而后期發生的壩面裂縫中的少部分水平縫是由于拱壩應力重分配引起的,大量的裂縫是線性溫差和表面非線性溫差引起的淺層短小細縫。豐樂拱壩特有的體型及方位布置進一步促使了上述裂縫的產生,應引起足夠的重視。
(1)水化熱與約束:大體積混凝土在澆筑振搗以后,水泥開始產生大量的水化熱,由于混凝上表面散熱的影響,混凝土中心溫度向表面遞減,由溫度的不同導致混凝土內外變形不統一,中心混凝土與邊緣混凝土變形不一致,因而產生溫度應力。由所受約束的不相同而導致產生溫度應力大小也不相同。當混凝土抗拉應力不能抵抗溫度應力的作用時,結構就會產生裂縫。
(2)地基和老混凝土與約束:當混凝土澆筑在比較堅硬的基巖或老混凝土上時,混凝土澆注初期的水化熱升溫,產生膨脹,受到巖石或老混凝土的約束,將產生較小的壓應力。而當混凝土溫度繼續下降時,由于基巖或老混凝土對溫降引起的收縮變形約束的結果,混凝土塊內將出現較大的拉應力,但混凝土塊由最高溫度降至施工期準穩定溫度場,需要經歷很長的時間。在這種約束當中,比較危險的情況是:當基礎塊混凝土,在早齡期遇到氣溫驟降,在混凝土塊表層,首先出現表面裂縫,而在后期混凝土塊繼續降溫過程中產生的拉應力,使表面裂縫不斷向縱深發展,因而形成破壞性的深層裂縫和貫穿性裂縫。
(3)溫差與約束:在施工期間,外界氣溫的突然下降會引起混凝土開裂。因為,外界氣溫下降越多,則內外溫差越大,溫差越大,溫度應力就越大。更本質地說,由于溫差大,外部混凝土與中心混凝土的變形差變得更大,變形差越大,結構所承受的變形應力越大,當應力差出現負值時,則會出現裂縫。
(4)混凝土收縮與約束:混凝土的收縮,也是產生裂縫的重要原因。由于對混凝土各項性能的特殊要求,實際所需拌合水比水泥水化所需的水要多得多。拌合水中只有約20%的水是水泥水化所必須的,其余的都要被蒸發掉。水分蒸發之后,引起混凝土收縮,當收縮受到約束時,則產生收縮應力,當收縮應力大于當時混凝上的抗拉應力時,則裂縫隨之產生。
2.大體積混凝土施工中的裂縫控制對策
大體積混凝土的溫度裂縫問題給許多工程帶來了一系列的挑戰,因此,需要在總結前人經驗的基礎上繼續深入研究。如何防止大體積混凝土的溫度裂縫,需要找到其產生的原因和影響因素,找到恰當的對策,采取恰當的措施,做到盡量避免和減少。
2.1合理分縫分塊
在大體積混凝土施工過程中,為了有效降低大體積混凝土的內外溫差,常采用分塊澆筑。分塊澆筑又可分為分層澆筑法和分段跳倉澆筑法兩種。分層澆筑法目前有全面分層法、分段分層法、斜面分層法3種澆注方案。在時間允許的條件下,可將大體積混凝土結構采用分層多次澆注,施工層之間按施工縫處理,即薄層澆筑技術,它可以使混凝土內部的水化熱得以充分地散發,應該注意的是分層澆筑的間歇時間。
2.2降低澆筑溫度
要降低混凝土的最高溫度和溫差,比較直接的措施是降低澆筑溫度,但其實施必須擁有一定的條件才能實現,在特大型工程中可能才用得到。降低澆筑溫度的具體措施包括[4]:(1)降低原材料溫度,如做好水泥散熱、骨料澆水冷卻和預冷等;(2)采用冷卻拌和水與加冰拌和;(3)澆筑前預冷混凝土;(4)減少運輸途中的熱量倒灌,包括減小運輸距離,采用特制的保溫罐車,用保溫材料包裹混凝土泵送管道等。在大體積混凝土的施工中比較實用的措施是做好水泥散熱工作、對骨料澆水冷卻、采用冷卻拌和水和減小運輸距離等。
2.3合理安排施工進度
施工進度對人體積混凝土的溫度的變化影響非常明顯。特別應該注意的是分次、分層澆筑的間歇時間。在分次當中,若間歇時間過長,則會延長施工工期,另一方面也會使老混凝土對新澆混凝土產生較大的約束,從而在上下層混凝土結合面產生難以發現的垂直裂縫。若間歇時間過短,則正處于下層混凝土升溫階段,表面溫度較高,這時覆蓋上層混凝土,就會明顯地不利于下層混凝土的散熱,同時也容易導致上層混凝土升溫,就有可能超過混凝土要求的最高溫升,從而加大混凝土產生裂縫的可能性[5]。因此,選擇上層混凝上覆蓋的適宜時間應是在下層混凝土溫度己降到一定值時,即上層混凝土溫升倒加到下層后,下層混凝土溫度回升值不大于原混凝土最高溫升。
2.5養護措施
目前,大體積混凝土常用的養護方法是保溫隔熱法。其中在嚴寒地區可采用托克托古爾法。采用的表面保溫材料包括:保溫被、不吸水的泡沫塑料板、聚苯乙烯泡沫塑料板、草袋、砂層保溫及噴涂保溫層等。在盡量減少混凝上內部溫升的前提下,大體積混凝土的養護是一項關鍵的工作,必須切實做好。養護的主要目的是保持適宜的溫度和濕度條件,混凝土的保溫措施常常也起到保濕的效果,因此兼收兩方面的效果。
綜上所述,在大體積混凝土的施工中,采取綜合措施進行溫度控制與裂縫控制,能提高施工效率、提高混凝土的施工質量,減小勞動力的消耗、降低勞動強度、節省工效、加快施工進度、降低工程造價、具有較高的實用性和經濟效益。
參考文獻:
[1]蔡正詠,混凝上性能,北京:中國建筑工業出版社,1981.
[2]陳譚生,通過控制大體積混凝土的內外約束限制其開裂,現代道橋技術新進展,2003年.
[3]公路橋涵設計規范,北京:人民交通出版社,1995年
[4]霍凱成,大體積混凝土溫控與防裂技術研究,武漢理工大學,碩士論文,2004年
1概述
在當今的整個社會的建設中,不論什么樣的建筑,都是采用鋼筋混凝土結構,因為該建筑材料價廉物美,施工方便,承載力大,可裝飾強的特點,日益受到人們的歡迎。在我國不論是城市或在農村,鋼筋混凝土的應用面可以說是無處不在。但是,在使用混凝土的同時,由于對混凝土的性能了解不深,在工程完畢后的十幾天,一個月或者更長一點的時間后,混凝土結構物出現了裂縫或其他不良反映,給人們的心中造成擔憂和后怕的感覺。一些搞混凝土技術的研究人員對混凝土構筑物的裂縫形成,進行了大量的研究和技術探討,提出解決混凝土裂縫的辦法和意見,也取得了較大的科研成果,使混凝土構筑物的裂縫降低到最低范圍之內。目前對混凝土結構物裂縫問題,是在混凝土工程建設中帶有一定普遍性的技術問題。而混凝土結構的破壞和建筑物的倒塌,也都是從結構裂縫的擴展開始而引起的。如地下工程(地下室、地下倉庫、地下變電所、地下人防工程等),若出現裂縫,將會產生大量的滲水,使地下工程的使用性能降低或不能使用;而廠房、住宅、辦公樓的墻、板、柱、梁出現裂縫后,一是影響美觀,二是影響使用壽命,有嚴重裂縫的建筑物將會威脅到人們的生命和財產的安全。故在某些施工驗收規范和工程都是不允許混凝土結構出現有明顯的裂縫。
但是,從近代科學關于混凝土工作的研究及大量的混凝土工程實踐證明,混凝土結構裂縫是不可避免的,裂縫是人們可以接受的一種材料特性,只是如何使有害程度控制在某一有效范圍之內。因為使用的混凝土是多種材料組成的一種混合體,且又是一種脆性材料,在受到溫度、壓力和外力的作用下,都有出現裂縫的可能性。而對出現裂縫后,就要分析哪些裂縫是有害裂縫,哪些是無害裂縫,經分析后,對有害裂縫的形成原因和如何處理,這是本文所提出的關鍵所在。
2國內外對混凝土裂縫控制的要求
從目前的情況看,設計上對混凝土裂縫有一定范圍。從我國的“混凝土結構設計規范《GBJ10——89)”表3·3·4規定看,其裂縫寬度在不同的環境下,不同的混凝土結構物其裂縫的寬度也有所不同的控制標準,允許裂縫寬度為0.2~0.3mm。而從國外的情況看,不同的國家對混凝土構筑物的裂縫寬度也有不同的規定,如1970年歐洲混凝土專業委員會的規范所收集各個國家的標準設計裂縫規定如下:
美國AGl規范規定裂縫為0.108mm;法國規范規定裂縫為0.27mm;加拿大規范規定裂縫為0.064mm;前蘇聯規范規定裂縫為0.12mm;波蘭規范規定裂縫為0.182mm。
從不同的國家來看,各國的規范對混凝土構筑物的裂縫都有不同的控制范圍和要求,要保證混凝土構筑物不出現裂縫可以說是不可能的。在我國,對在不同環境下混凝土構筑物,在不同的介質情況下,所規定的混凝土裂縫寬度也不同。所以說,對混凝土構筑物的裂縫我國規范規定在設計上有一定的允許寬度。國際上也都根據本國的特點,對混凝土的裂縫都有明確的規定,說明混凝土結構的裂縫在一定范圍內是允許的,要想控制混凝土構筑物不裂縫是很難的,關鍵是裂縫的寬度應該控制在什么范圍內。
3混凝土構筑物裂縫的種類及滲、漏原因
混凝土滲、漏的主要原因是在其拌合物在澆灌振搗過程中漏振和振搗不密實而產生的毛細孔隙或蜂窩狀,在外部水壓力的作用下,導致滲、漏現象。
同時,由于設計的原因,如結構的造型尺寸、受力情況、構造等因素考慮不周,也會造成混凝土結構的滲、漏現象。從以往的實際情況看,混凝土的裂縫大致可分為以下幾種:
(1)混凝土拌合物凝結前的沉降裂縫及干縮裂縫;
(2)混凝土溫度應力裂縫;
(3)混凝土自應力裂縫;
(4)混凝土受外力及荷重影響裂縫。
從實際情況來看,地下混凝土工程結構的裂縫情況可分為以下幾個方面,筆者予以分別介紹。
3.1混凝土拌合物沉降裂縫
這種裂縫的發生,往往是采用大流動性混凝土拌合物時而發生的裂縫,大家知道,大流動性混凝土拌合物在混凝土初凝前,混凝土拌合物中的粗骨料始終處于一種自由體,雖然經過振動器械進行了振動,內部的孔隙也基本排除,但在混凝土內部的粗骨料本身在自身質量的作用下緩慢下沉,若是素混凝土,內部的下沉是均勻的,在混凝土硬化過程中,表面的裂縫一般均為施工人員在操作過程中所留下的腳窩因用素漿找平后而形成的,因為這些裂縫是素漿在硬化時產生的收縮(干裂)裂縫;但是只要在混凝土初凝時予以壓光即可解決。另外一方面是鋼筋混凝土,在混凝土沒有達到初凝前,其內部的粗骨料繼續處于下沉狀態,而混凝土沿著鋼筋的下方繼續下沉,由于在鋼筋的作用下,鋼筋上面的混凝土被鋼筋的支護,在鋼筋上表面沿著鋼筋的走向產生裂縫,這種裂縫的深度一般只達到鋼筋表面為止。
3.2早期混凝土干縮裂縫
這種裂縫一般出現在混凝土較薄的結構;如現澆樓板混凝土、道路混凝土、地坪等混凝土,在結構斷面≤300mm、混凝土坍落度>100mm時,最容易發生此種裂縫。這種裂縫產生的原因是混凝土拌合物在澆搗完畢后,混凝土拌合物內部的水份一部分泌出流失,一部分被水泥水化所用,另外一部分被蒸發,尤其是在干熱、風較大的季節以及在空中的薄壁結構板混凝土拌合物則更容易出現失水干縮而發生裂縫。這種裂縫出現的時間較早,一般混凝土在初凝前就已經發生,若不加以處理和養護,局部裂縫將會貫穿整個混凝土結構,部分裂縫也將達到結構1/3~1/2的深度。象這樣的裂縫若在混凝土還沒達到初凝之前,對其表面用木抹子進行再次拍壓抹平,并立即在表面覆蓋養護,即可消除該種裂縫的再發生。這種裂縫在實際的施工過程中會經常遇到,但只要引起注意,象混凝土早期出現初凝前的裂縫完全可以避免。
3.3對拉螺栓鋼筋端頭處漏水現象
在實際工程的施工中,對拉螺栓是用來固定模板的,在混凝土澆灌前已預先固定在鋼筋籠內,且鋼筋穿過整個混凝土結構物。在施工時,該對拉鋼筋在±0.00以下都要求在對拉鋼筋中焊接有鋼板止水墊,防止地下水從鋼筋周圍直接滲入混凝土結構物內部,要求止水鋼板與鋼筋四周用電焊焊滿,不得有漏焊和點焊,確保對拉螺栓的止水效果,若止水墊焊不滿,在混凝土振搗過程中,對拉螺栓下方的骨料顆粒還在繼續下沉,在混凝土凝結后,對拉鋼筋下面就形成一道水膜,在混凝土中的水泥產生水化和水份的蒸發以后,在螺拴下表面就形成了一道貫穿性的毛細孔,這種毛細孔在外部地下水的壓力作用下,將產生滲水現象。
但是,有的鋼止水板在焊接時焊得不嚴,有漏焊點或漏焊處,在外部水壓力的作用下,水就會通過止水板的漏焊處,順著鋼筋螺栓滲透到結構物內部。
3.4貫通性毛細孔和微細裂縫
在一般大流動性混凝土工程結構上容易產生貫通性的毛細孔。因為泵送混凝土的流動性大,相應地混凝土單位用水量也要比普通混凝土用水要多。在混凝土澆搗完后,一部分水泌掉,一部分蒸發,一部分在水泥水化時被水泥吸收,那么另外一部分攪拌用水就存在混凝土內部,在一定的時間內,水慢慢揮發,原來水所占的體積就形成了一條毛細孔隙,在混凝土結構外部地下水的壓力下,這種貫通性的毛細孔就很容易產生滲漏。
微細裂縫主要反映在大流動性混凝土內部,由于在振搗時漏振或振搗不夠,在混凝土硬化前,尤其是在鋼筋下方的骨料仍在繼續下沉,而鋼筋上部的混凝土中的骨料被鋼筋所支撐不能下沉,在鋼筋的下表面就形成了一道微細的水膜,日后它則會形成一條孔隙,地下水便會從此縫隙滲漏到混凝土結構物內部。
3.5混凝土應力裂縫
3.5.1混凝土溫度應力裂縫
在混凝土硬化過程中,混凝土構筑物可能要承受各種溫度和濕度及其它原因引起變形而產生應力裂縫,因為混凝土在內、外約束應力作用的情況下,混凝土構件的自約束應力是由于非線性的不均勻變形引起,它產生了局部裂縫,而混凝土構件(結構)在外部的約束應力由于結構與結構的相互約束,這種約束變形可能使混凝土構件(結構)產生貫穿性斷裂和局部裂縫。
根據王鐵夢教授的理論,在混凝土尤其是大體積混凝土澆搗完后,水泥已經開始水化,其混凝土內部的最高溫度峰值可按以下經驗公式計算,即:
T0=T+C·α
式中T0——混凝土內部峰值溫度(C°);
T——混凝土澆灌入模時的溫度(C°);
C——每立方米混凝土水泥用量(kg/m3);
α——經驗系數;當采用礦渣水泥、火山灰水泥、粉煤灰水泥時;α=0.1;當采用普通水泥時α=0.105。
當混凝土內部溫度應力大于混凝土的拉應力時,混凝土結構將會出現裂縫,故在“混凝土結構工程施工及驗收規范《GB50204——92》”中第4.5.3條明確規定,“對大體積混凝土的養護,應根據氣候條件采取控溫措施,并按需要測定澆筑后的混凝土表面和內部溫度,將溫差控制在設計要求的范圍內;當設計無具體要求時,溫差不宜超過25C°”。而在大體積混凝土施工中,往往設計上無明確的規定,只能靠施工的經驗進行控制。
因為混凝土拌合物內的水泥在水化時,要產生大量的水化熱,當混凝土內外溫差超過一定的限度,混凝土的拉應力小于混凝土的熱漲應力時,便會產生溫度應力裂縫。這種裂縫主要出現在大體積混凝土或在冬期施工的混凝土。
例如:我們在寶鋼某大型設備基礎的混凝土施工中,混凝土強度設計為C30級,每立方米混凝土的水泥用量為360kg/m3,當時的氣溫為33C°,為了了解混凝土內部升溫峰值,我們采取了電熱偶測溫和測溫孔的辦法測定混凝土內部的溫度與混凝土表面的溫度,以計算混凝土內外溫差,經實測的溫度和計算的溫度看,兩者相差不大。兩者的溫度結果為:
(1)實際測試的溫度峰值為71.3C°;
(2)計算溫度為:T0=34.5+(360×0.1)=70.5C°;
從兩者的溫度情況看,溫度相差僅為0.8C°。說明計算的溫度與實測的溫度相差不大,完全可以以計算的溫度對混凝土進行保溫措施。當時該工程混凝土溫度最高時所測混凝土外表面溫度為44C°,內外溫差為27.3C°,大于規范規定的25C°要求,故立即采取混凝土表面的保溫措施,提高混凝土表面溫度,縮小內外溫差,使混凝土沒有因溫度應力出現裂縫,保證了混凝土基礎的質量。在混凝土出現溫度應力裂縫的情況時,一般往往會發生在混凝土結構物的變截面和混凝土斷面較小的部位,為此,在施工大體積混凝土或者較厚的混凝土墻版時,施工單位要予以注意。
3.5.2混凝土自應力裂縫
在混凝土硬化后,即使在混凝土上方沒有任何荷重的作用,也因其自身的收縮而產生裂縫。尤其是在夏季的混凝土施工,更容易發生該方面的裂縫。這種裂縫往往是在混凝土墻板上容易產生,它的形式一般為上下貫通的裂縫,在整個混凝土墻壁上呈現出有規律性的裂縫,一般在1.8~2.2m一道。如我們在上海市某研究所大樓地下室的墻板的混凝土施工中,混凝土的養護到7天后,澆灌地下室混凝土頂板,施工完后,發現地下室墻壁呈現規律性的裂縫,裂縫寬度為0.15mm左右,長度為整個墻壁的高度。經請部分專家分析,該種裂縫是混凝土的自應力引起的,原因是混凝土在水泥水化熱達到一定的溫度的時候,混凝土的膨脹應力開始消失而此時的混凝土開始產生收縮。這種收縮是均勻的收縮,所以在此種條件下,混凝土墻板的裂縫呈現出有規律性的裂縫。但是,若墻板與地下室承重相聯結蹬地方,往往會在柱與墻的交點處裂縫以及在墻板的變截面發生裂縫。
3.6荷載變形裂縫
這種裂縫一般可分為兩種情況造成:一是在混凝土結構還未達到設計要求的強度時,被車輛或重物的碾壓或撞、砸而造成的變形縫;二是即使混凝土已經達到了設計強度,而在混凝土墻壁或薄壁結構物上撞擊或超荷載堆放而造成的裂縫。后者出現的裂縫一般較為明顯,屬于貫穿性的裂縫。
3.7混凝土結構的漏水現象
混凝土的漏水現象往往會發生在以下幾個方面:
(1)蜂窩麻面滲水現象
蜂窩麻面直接與混凝土施工有關。這些蜂窩麻面的出現原因主要是在施工時漏振或者振動時間不足而發生的,這種蜂窩麻面在混凝土結構中有的是獨立一批片存在、有的則呈連貫性的。所以,在發生滲、漏時它不是點滲、漏,而是成片滲、漏的現象。
(2)伸縮縫、沉降縫滲、漏
在大體積混凝土和混凝土結構物比較長、結構物高低相差較大的工程中,因工藝的要求一般都設有伸縮縫和沉降縫,以保證混凝土結構在部分變形時而不影響其它整體變形的需要。這些部位往往在施工時因某些原因使伸縮縫和沉降縫不能完全保證其質量,造成這些部位的滲、漏,它在處理時往往要比其它部位的滲、漏要難處理得多。
(3)新舊混凝土接茬(縫)的滲、漏
在原有的混凝土結構物上繼續澆灌混凝土時,原來的混凝土基礎表面沒有進行鑿毛處理或鑿毛后未清理干凈,或者是未用水沖洗,就在原混凝土基礎上澆灌混凝土拌合物。這樣就會造成新舊混凝土的接茬(縫)之間形成一道摻、漏的縫隙。這種滲水現象在實際工程施工中會經常出現,尤其是在混凝土塌落度較小時(一般在50mm以下),接茬(縫)又未鋪設水泥砂漿則更容易發生。這種縫隙在混凝土施工時特別要加以注意,引起重視。
4裂縫滲、漏的處理方法
根據混凝土滲、漏的特點,要進行分析該滲、漏的原因和滲水形成的部位,以及滲、漏的程度,根據不同的形式可采取不同的堵漏辦法,我們實際的堵漏方法如下:
對混凝土的堵漏的方法一般是采用四種辦法,在日常的實施中這四種方法是比較合適的,也是可行的,這些方法是:
(1)化學灌漿法;(2)嵌縫堵漏法;(3)堵封堵漏法;(4)涂模(布)堵漏法。
以上四種堵漏方法是根據不同的滲、漏情況而選擇不同培漏方式來解決混凝土滲、漏問題,下面筆者根據不同滲、漏按不同的堵漏方法予以介紹。
4.1化學灌槳法
化學灌漿堵漏,是采用一種化學灌漿料來解決混凝土形成的線型摻、漏的部位,一般這種滲、漏是一條線,堵漏時要采取化學灌漿料與快速凝結水泥和無收縮水泥砂漿配合使用,才能真正達到堵漏效果;化學灌漿料一般分為四種型號,它們的技術指標見表1。
表1化學灌漿料技術指標
序號
材料名稱
粘結強度(MPa)
抗壓強度(MPa)
遇水膨脹率(%)
1
LW水溶性聚氨脂
1.70
—
273
2
HW水溶性聚氨脂
2.70
19.8
—
3
LW∶HW=60∶40
1.86
11.8
30
4
低粘度環氧樹脂
5.10
82.4
—
化學灌漿堵漏,一般是對漏水較為嚴重的部位,它們的裂縫一般均是貫通性的,在堵漏處理上是比較困難的一種滲、漏,為此需要采取化學灌漿的辦法進行堵漏,堵漏時,先將滲、漏水的裂縫部位予以確定,研究處理的方法,然后確定堵漏方案,對該種裂縫漏水的處理方法如下:
(1)在漏水處鑿出一道“V”型槽,用摻入速凝劑的水泥凈漿埋設灌漿嘴,用聚合物水泥砂漿PCCM封縫;
(2)對混凝土基層面用鋼絲刷清理浮灰,并用清水沖洗干凈;
(3)在混凝土基層表面無浮水時,噴涂5mm厚的PCCM——聚合物水泥砂漿。PCCM聚合物水泥砂漿主要力學性能見表2;
表2PCCM聚合物水泥砂漿主要力學性能
性能
粘結強度
(MPa)
抗拉強度
(MPa)
極限拉值
(Eu)
抗拉彈模
(E)
抗裂系數
(k)
抗滲壓力
(MPa)
指標
3.5~4.2
3.7~4.7
700~800×10-6
700~800(MPa)
5.5~7.5×10-4
>S1.2
(4)對噴涂的聚合物養護5d后,用LW水溶性聚氨脂漿液進行化學灌漿,灌漿的壓力一般為0.3(MPa),防止在灌漿時的壓力過大,造成進塑料管的爆裂。
在實際的堵漏的處理中,采用油氈或鋁箔的目的是為了防止水泥漿進入金屬閥(金屬閥一端連接透明塑料注漿軟管作為引水管,在混凝土表面達到一定的強度后又作為化學灌漿的輸送管)的注漿孔使堵塞。用油氈或者鋁箔套住金屬閥,然后在油氈或鋁箔四周用快速凝結水泥凈漿予以密封,然后用上述介紹的材料進行面層處理。
4.2嵌縫堵漏法
采用該種堵漏方法,一般是混凝土表面只出現映水現象,在長時間后,能把混凝土墻面映濕成大片的水跡和地下存有積水,如果不處理,將會影響整個表面的美觀及室內的使用效果,為此,本辦法對滲水的處理應采用嵌縫的方法進行,嵌縫的處理方法是:
(1)沿著混凝土滲水的縫隙鑿出“v”型槽,清除槽內的雜物,然后用清水沖洗干凈;
(2)在清潔、干燥的縫面上均勻涂刷SR塑料止水材料專用基液;
(3)在基液實干前,嵌填SR塑性止水材料;
(4)修理及保護:密封膠在表面干燥以前,用小刮刀等工具抹平,將表面修理平整;
(5)在經過嵌縫的縫面上用噴水壺撤上水,保持縫面的潮濕;
(6)將按比例配制的PCCM砂漿用刮刀將其嵌入縫中,并用抹刀將其抹平;
(7)待PCCM砂漿凝結后,采用潮濕的辦法養護3~5d;
(8)按比例配制HK——964增厚型環氧涂料,反復攪拌均勻后使用;
(9)在干燥、平整的縫表面上,均勻涂刷964彈性涂料二道,要一刷壓一刷操作,防止漏刷;
(10)在整個堵漏工作完畢后,對所使用SR、964涂料的工具,要及時用溶劑清洗干凈待用。
4.3封堵堵漏法
該種堵漏的方法,主要是應用在水下或地下混凝土在涌水的條件下的孔隙、孔洞和裂縫的快速封堵。在封堵這樣的漏水部位,往往要比其它的滲、漏要困難得多,且堵水效果要略差一些,但只要在處理時按要求操作,可保證混凝土表面不摻水。這種材料有的叫快速堵漏劑,也有的稱為PBM聚合物,其聚合物混凝土的水下性能見表3。
表3PBM—7聚合物混凝土的水下性能
齡期性能
粘結強度
(MPa)
抗拉強度
(MPa)
抗折強度
(MPa)
抗壓強度
(MPa)
1d
2.0
5.2
13.7
42.6
30d
2.1
5.9
15.1
56.4
采用本辦法堵漏時一定先把基底處理干凈,在混凝土表面不得留有混凝土雜物和粉末,若是點涌水,先把漏水處鑿一個直徑為80~150mm深50~80mm的工作坑,在坑中的漏水處預放一個導水管,作為排水之用,待先抹上去的聚合物混凝土(或砂漿)達到一定的強度后,再用聚合物砂漿用力給堵上。在處理滲漏時,一般要根據漏水的流水量的大小來采取不同的堵漏方法,若是有水向外踴,可采取上述方法進行。若漏水量很小,可以在漏水處按上述的辦法先鑿除一個堵漏工作坑,用清水沖洗干凈后,立即用聚合物混凝土或聚合物砂漿一次封堵,并用力將聚合物混凝土或聚合物砂漿壓實(這種聚合物拌入混凝土或水泥砂漿后,其凝結時間一般在3~5分鐘),待混凝土或砂漿凝結硬化后,在其表面用高標號砂漿抹平,在5d內保持表面潮濕即可。
注意,在有涌水的堵漏過程中,一定要對鋼管或竹筒混凝土或砂漿在硬化(凝結)前進行轉動,防止混凝土或砂漿在硬化后無法取出,造成在最后堵流時發生困難或返工現象。
另外,如果漏水呈上下裂縫,在堵這種形式的裂縫時,要注意從上至下進行操作,在比較容易操作的高度設置排水管,待整個裂縫所封堵的材料達到設計要求后,再對排水的位置進行封堵。也可以分段封堵,方法同上。
4.4涂膜(布)堵漏法
涂膜堵漏是將混凝土結構物表面有滲漏的地方經過處理后,直接在其表面上進行防水處理。這種方法一般適用于混凝土結構在施工時振搗不密實,有的是漏振而形成的混凝土內部不密實而造成的大面積滲水情況,這種滲水現象一般無法用壓力灌漿和嵌入法解決,只能用涂膜法進行表面防水處理。這種處理方法比較簡單,但在操作時要求較嚴格,一般都要求混凝土結構表面沒有浮灰和雜物,否則將會影響混凝土面與涂膜的粘結力,影響防水效果。
涂膜(布)防水所使用的材料為HK——96系列增厚型環氧涂料,它們的用途性能分別為:
961——用于干燥的混凝土表面;962——用于潮濕的混凝土表面;963——用于水下混凝土或結構物表面;964——為彈性涂料。
在選用以上四種涂膜材料時,一定要根據不同的漏水方式,選擇不同的涂膜材料。如某種在繼續沉降的結構,但沉降量很小,這時要選擇有彈性的涂料,不能選擇硬脆性涂膜材料,防止結構物在沉降時發生不脆裂而起不到防水效果。
5對堵漏工作的幾點看法
經過對寶鋼一、二、三期的地下混凝土結構工程出現滲、漏后的處理工作看,對混凝土堵漏只是一種事后的解決辦法,首先在混凝土施工時要加強對混凝土的施工管理工作,避免和減少混凝土結構的裂縫,這才是我們的唯一目的。堵漏堵得再好,它不過是一種消極的辦法,它不但要造成浪費,而且要投入大量的人力和物力,在工程投入使用后也會發生種種意想不到的問題。為此,我們的精力首先要放在混凝土的施工管理上,嚴格把好混凝土的施工質量關。但是,由于混凝土是由多種材料組成的一種脆性材料,在施工過程中往往很難保證混凝土結構不出現裂縫,但一定要控制混凝土盡量少出現裂縫。在萬不得已時出現的裂縫,再進行對裂縫滲漏進行封堵或進行壓力灌漿的辦法。經過在寶鋼一、二、三期的地下混凝土工程滲漏的處理情況看,效果是明顯的,達到了預期的目的,為此我們認識到:
(1)要確定混凝土滲、漏部位的情況,確定堵漏方案,選擇合理的堵漏材料,避免堵漏達不到預期的效果。
(2)堵漏前,不論是鑿洞或是鑿“V”型槽,深度一定要超過鋼筋以下,一般所鑿的深度為50~80mm,太淺容易發生再漏現象。
(3)所有被鑿的洞或“V”型槽,均要用清水沖洗干凈,洞和槽內不得存有浮灰,否則經過一時期后,洞口周圍將會重新滲、漏。
水泥砼裂縫是混凝土的一種常見病和多發病。病情絕大多數發生于施工階段,其原因復雜多變,從裂縫外觀可分成微觀裂縫和宏觀裂縫兩大類。
微觀裂縫是指肉眼看不到的、水泥砼內部固有的一種裂縫,它是不連貫的。寬度一般在0.05mm以下,但是要比肉眼可見的即宏觀裂縫多得多。這種水泥砼本身固有的微觀裂縫,在荷載不超過設計規定的條件下,一般視為無害。用實體顯微鏡觀察、X射線或超聲波探測儀等物理檢驗手段都可鑒定出這種裂縫。另外一種最直接的方法就是用滲水觀察,一定壓力的水可以從水泥砼內部的裂縫中滲透出來。
宏觀裂縫寬度在0.05mm以上,并且認為寬度(最終寬度,即裂縫不再擴展的寬度)小于0.2~0.3mm的裂縫是無害的;繼續發展可能會影響到結構性能、使用功能和耐久性的裂縫稱為有害裂縫。本文中的裂縫指有害裂縫。
3.有害裂縫的區分有害裂縫按照成因可分為以下幾種:
3.1收縮裂縫。在施工階段因水泥水化熱及外部氣溫的作用引起水泥砼收縮而產生的裂縫。多為規則的條狀,很少交叉。常發生在結構變截面處,往往與受力鋼筋平行。收縮裂縫多發生在大體積水泥砼中,梁、板、柱等小塊體構件,特別是預應力構件極少產生收縮裂縫。水泥砼收縮裂縫危害較大,尤其是暴露在大氣中的構筑物,影響更大。如不加以防止,可能會造成嚴重后果。
3.2超載裂縫。水泥砼構件超荷載使用時,造成變形、失穩或因疲勞等原因產生裂縫。一般均發生在構件受彎矩最大的部位,成條狀,但分布不象收縮裂縫那樣均勻,擴展方向也相反,一般沿受力鋼筋垂直方向或斜向發展。產生超載裂縫的原因,往往是施工階段在構件上不適當地施加施工荷載或者是上部建筑過早施工。另外,溫度應力影響也是原因之一。
3.3沉降裂縫。因地基差異沉降或構件接合不良、剪應力超過設計強度而產生的一種水泥砼裂縫,多見于填土地基、樁基沉降不均勻的各種基礎與墻體。這種裂縫一般與地面垂直,或成30°~40°角方向發展,寬度因荷載大小而異,與沉降值成比例。沉降裂縫危害極大,并且極難處理。因此必須在設計上采取有效措施,施工、使用中也要加強觀測、監視。
3.4龜裂裂縫施工階段因配料、攪拌、澆筑、養護等各環節的操作不當均能產生,其中以養護環節為關鍵。裂縫成龜殼狀或散射狀,無規律,長度、寬度也不一致。
3.5疏松裂縫。水泥砼澆筑時因下料不均,致使水泥砼材料離析,或因漏振、過振而產生的疏松狀態裂縫。如果它延續到水泥砼表面,則容易發現,如果只產生在水泥砼內部,則不能直接表現出來。這種疏松帶長度不等,視下料或振搗情況而異。
4.砼有害裂縫的成因
4.1與設計方面有關的裂縫。(1)超過設計荷載范圍和未考慮到的。(2)設計的構件截面不足、鋼筋用量不足、配置位置不當。(3)建筑結構沉降差異、地震、風力考慮不周。(4)溫度應力和砼收縮應力,估計不足。
4.2與環境條件有關的裂縫。(1)環境溫度和濕度的變化。(2)各結構、構件區域溫度差異過大、凍融、凍脹不一致。(3)內部鋼筋銹蝕、火災時表面遭受高溫。(4)酸堿、鹽類化學侵蝕,沖擊、振動等影響。
4.3與各種材料性質和配合比有關的裂縫。(1)水泥的非正常凝結(受潮水泥和水泥溫度過高)。(2)水泥的非正常膨脹、氧化鎂、氧化鈣過高,含堿量過高。(3)水泥的水化熱不正常。(4)骨料含泥量過大,級配不良。(5)使用堿活性骨料和風化巖石及砼自身收縮。(6)混凝土配比不當(水泥用量過大、水灰比過大、用水量大、水膠比大、砂率過大)。(7)選用水泥品種不當,外加劑不當和匹配不當,外加劑摻量過大。
4.4與施工有關的裂縫。(1)拌和不均勻,攪拌時間不足或過長,拌和后澆筑時間過長,泵送時增加了用水量和水泥用量。(2)澆筑順序有誤、澆筑不均勻、振動趕漿、鋼筋過密。(3)搗實不良、坍落度過大、粗骨料下沉、泌水、砼表面強度過低就進行下一道工序施工、連續澆筑時間過長、接茬處理不當。(4)鋼筋搭接錨固不良、鋼筋預埋件擾動和鋼筋保護層不夠。(5)模板變形、漏漿、滲水、剛度不夠、下沉、過早拆除和拆除不當。(6)砼硬化前、遭受擾動或承受荷載。(7)養護條件不到位和養護不及時或時間過短。(8)養護之前遭受急劇干燥(日曬、大風、凍害)。(9)砼表面抹壓不及時和抹壓時間不當。(10)大體積砼內部溫度與表面溫度、環境溫度差異過大。
5.本工程對有害裂縫的控制方法按照本工程的特點,我們通過重點控制以下幾項措施,最大限度的減少胸墻砼有害裂縫。
5.1設計。(1)配筋設計時,改變傳統的深梁式理論,采用全新的實體元理論;從而改變了以往工程中只在軌道梁下方配筋的方式,在胸墻整個斷面大范圍配筋,從而整個增強了胸墻的整體性。(2)每個沉箱上方設置兩段胸墻,設計長度由24.03m/段改為12.015m/段,從而減少了每段胸墻的體積。
6.2環境。(1)砼澆注前,聽取天氣預報,雨雪天、大風天不施工。(2)砼澆注前,使用淡水沖刷底面。(3)砼澆注前,使用鋼絲刷對下層鋼筋除銹,防止內部鋼筋銹蝕。
6.3原材料和配合比。(1)砂石料進場前必須經過砼供應商和施工方兩級檢驗,各項指標合格后方可進場使用。(2)比較選擇水化熱較低且性能較穩定的普通硅酸鹽水泥水泥。本工程通過比對實驗,確定采用三菱水泥。(3)適當延長混凝土的凝結時間,使內部的熱量在混凝土凝結之前較多的散出;降低了混凝土凝結后內部水化熱峰值,減小混凝土的內外溫差。(4)配合比依據《水運工程混凝土施工規范》(JTJ268-96)和《水運工程混凝土質量控制標準》(JTJ269-96)進行設計,配合比設計采用三級配,設計坍落度80~100mm。
5.4施工
5.4.1砼澆注。澆筑時控制落灰高度不大于2米、均勻下灰人工平倉,避免粗骨料堆積。采用插入式振搗棒分層振搗,操作時快插慢拔,振點呈梅花形均勻排列,每一振點振至表面不再翻漿為止,振搗順序為從模板處開始,先外后內,移動間距不大于25cm,分層振搗時應插到下層砼中不低于5cm,不得漏振、過振。并且在砼澆筑過程中,安排專人經常檢查模板支立的穩固性。嚴格控制坍落度,每次澆注時現場實測坍落度,控制在80mm~100mm,若發現坍落度過大現象,則在規范允許范圍內適量減水。頂層胸墻澆注前,先用淡水潤濕底層砼表面,以利于上下層砼更好的結合。砼澆注完成后,將上部因振倒產生的浮漿刮除、清理干凈。
5.4.2分層澆注。為保證前沿線順直,標高滿足設計要求,胸墻分兩層澆注。頂層胸墻澆注前,底層胸墻頂面必須進行鑿毛處理,鑿毛時間選擇在砼強度達到設計強度30%以后進行,全部采用人工進行,以露出1/3石子為宜。圖2加強沉降位移觀測,在底層胸墻相對穩定時及時澆注頂層胸墻,以減少兩層胸墻澆注的間隔時間。
5.4.3面層砼摻加聚丙烯網狀纖維。胸墻頂面300mm厚范圍內設置分散狀聚丙烯纖維,纖維直徑為18μ,纖維長度為12mm,纖維數量為3億根/Kg,抗拉強度為300MPa,用量為0.6Kg/m3。聚丙烯網狀纖維是以聚丙烯為原材料,通過特殊工藝制造而成的。其外觀為多根纖維單絲相互交連而成網狀結構。當聚丙烯網狀纖維投入到混凝土后,在混凝土攪拌過程中,纖維單絲間的橫向連結經混凝土自身的揉搓和摩擦作用而破壞,形成纖維單絲或網狀結構充分張開,從而使砼更好的連結。圖3同鋼纖維相比,聚丙烯網狀纖維在充分分散后獲得的聚丙烯纖維單絲具有細度大、數量多的顯著優勢,加之聚丙烯纖維自身所具備的不吸水、抗酸堿能力強和彈性模量與混凝土相當等特性,能明顯抑制或減少因混凝土塑性收縮、干縮、溫度變化等因素引起的裂縫。
5.4.4預埋鐵件周圍綁扎細鋼筋。按照以往經驗,預埋鐵件四角易出現45°應力裂縫。本工程中,所有預埋鐵件四周均綁扎埋設8鋼筋扎成的鋼筋網片,網片分上下兩層埋置。
5.4.5養護。胸墻砼澆注完畢后,清理掉頂面的浮漿,終凝后及時進行養護;頂面及前后墻均覆蓋土工布并保持濕潤。按照規范要求,養護時間不少于14天,并有完整的養護記錄。
6.防治效果通過對裂縫產生原因進行深入的分析,有針對性的采取了治理措施,目前為止,本工程胸墻頂面及墻面未發現有害裂縫。
7.體會
7.1正確區分無害裂縫和有害裂縫,對指導工程施工具有重要意義。
7.2嚴格按照規范要求控制各工序,對于防治質量通病有重要作用。
前言:隨著經濟發展,公路建設取得突飛猛進的發展,在橋梁建造和使用過程中,因裂縫而影響工程質量甚至導致橋梁垮塌的報道屢見不鮮。混凝土開裂可以說是“常發病”和“多發病”,經常困擾著橋梁工程技術人員。如果采取一定的技術措施,加強施工質量管理的力度,混凝土開裂是可以克服和控制的。通過近幾年橋涵養護管理工作的實際經驗,對混凝土裂縫本文初步分析了混凝土橋梁裂縫產生的原因,淺談一些自己的看法。
1荷載引起的裂縫原因
1.1設計計算階段,結構計算時不計算或部分漏算;計算模型不合理;結構受力假設與實際受力不符;荷載少算或漏算;內力與配筋計算錯誤;結構安全系數不夠。結構設計時不考慮施工的可能性;設計斷面不足;鋼筋設置偏少或布置錯誤;結構剛度不足;構造處理不當;設計圖紙交代不清等。
1.2施工階段,不加限制地堆放施工機具、材料;不了解預制結構受力特點,隨意翻身、起吊、運輸、安裝;不按設計圖紙施工,擅自更改結構施工順序,改變結構受力模式;不對結構做機器振動下的疲勞強度驗算等。
1.3使用階段,超出設計載荷的重型車輛過橋;受車輛、船舶的接觸、撞擊;發生大風、大雪、地震、爆炸等。在超載車輛日益增加的今天,對設計荷載較低的橋梁就會造成板底裂縫。比如,S316線K103+620哈拉布拉中橋,由于超載車輛外荷載作用,造成橋板產生了裂縫。
2溫度變化引起的裂縫
引起溫度變化主要因素有:
2.1日照:橋面板、主梁或橋墩側面受太陽曝曬后,溫度明顯高于其它部位,溫度梯度呈非線形分布。由于受到自身約束作用,導致局部拉應力較大,出現裂縫。日照和下述驟然降溫是導致結構溫度裂縫的最常見原因。
2.2水化熱:出現在施工過程中,大體積混凝土(厚度超過2.0米)澆筑之后由于水泥水化放熱,致使內部溫度很高,內外溫差太大,致使表面出現裂縫。施工中應根據實際情況,盡量選擇水化熱低的水泥品種,限制水泥單位用量,必要時可采用循環冷卻系統進行內部散熱,或采用薄層連續澆筑以加快散熱。
3收縮引起的裂縫
3.1塑性收縮:在施工過程中、混凝土澆筑后4-5小時左右,此時水泥水化反應激烈,分子鏈逐漸形成,出現泌水和水分急劇蒸發,混凝土失水收縮,同時骨料因自重下沉,因此時混凝土尚未硬化,稱為塑性收縮。塑性收縮所產生量級很大,可達1%左右。
3.2縮水收縮(干縮)。混凝土結硬以后,隨著表層水分逐步蒸發,濕度逐步降低,混凝土體積減小,稱為縮水收縮(干縮)。因混凝土表層水分損失快,內部損失慢,因此產生表面收縮大、內部收縮小的不均勻收縮,表面收縮變形受到內部混凝土的約束,致使表面混凝土承受拉力,當表面混凝土承受拉力超過其抗拉強度時,便產生收縮裂縫。
3.3自生收縮。自生收縮是混凝土在硬化過程中,水泥與水發生水化反應,這種收縮與外界濕度無關,且可以是正的(即收縮,如普通硅酸鹽水泥混凝土),也可以是負的(即膨脹,如礦渣水泥混凝土與粉煤灰水泥混凝土)。
混凝土收縮裂縫的特點是大部分屬表面裂縫,裂縫寬度較細,且縱橫交錯,成龜裂狀,形狀沒有任何規律。
4地基礎變形引起的裂縫
地質勘察精度不夠、試驗資料不準;地基地質差異太大;結構荷載差異太大;結構基礎類型差別大;水毀對橋梁基礎的沖刷;地基凍脹;橋梁建成以后,原有地基條件變化。
5施工材料質量引起的裂縫
混凝土主要由水泥、砂、集料、拌和水及外加劑組成。配置混凝土所采用材料質量不合格,是導致結構出現裂縫的原因。
5.1水泥
(1)水泥出廠時強度不足,水泥受潮或過期,可能使混凝土強度不足,從而導致混凝土開裂。
(2)當水泥含堿量較高(例如超過0.6%),同時又使用含有堿活性的骨料,可能導致堿骨料反應。
5.2砂、石、集料
砂石的粒徑、級配、雜質含量。
砂石粒徑太小、級配不良、空隙率大,將導致水泥和拌和水用量加大,影響混凝土的強度,使混凝土收縮加大,如果使用超出規定的特細砂,后果更嚴重。
5.3拌和水及外加劑。拌和水或外加劑中氯化物等雜質含量較高時對鋼筋銹蝕有較大影響。采用含堿的外加劑,可能對堿骨料反應有影響。
6施工工藝質量引起的裂縫
在混凝土結構澆筑、構件制作、起模、運輸、堆放、拼裝及吊裝過程中,若施工工藝不合理、施工質量低劣,容易產生縱向的、橫向的、斜向的、豎向的、水平的、表面的、深進的和貫穿的各種裂縫,特別是細長薄壁結構更容易出現。裂縫出現的部位和走向、裂縫寬度因產生的原因而異,比較典型常見的有:
6.1混凝土振搗不密實、不均勻,出現蜂窩、麻面、空洞,導致鋼筋銹蝕或其它荷載裂縫的起源點。
6.2混凝土澆筑過快,混凝土流動性較低,在硬化前因混凝土沉實不足,硬化后沉實過大,容易在澆筑數小時后發生裂縫,既塑性收縮裂縫。
6.3混凝土攪拌、運輸時間過長,使水分蒸發過多,引起混凝土塌落度過低,使得在混凝土體積上出現不規則的收縮裂縫。
6.4混凝土初期養護時急劇干燥,使得混凝土與大氣接觸的表面上出現不規則的收縮裂縫。
6.5混凝土分層或分段澆筑時,接頭部位處理不好,易在新舊混凝土和施工縫之間出現裂縫。采用分段現澆時,先將混凝土接觸面鑿毛、清洗不好,新舊混凝土之間粘結力小,或后澆混凝土養護不到位,導致混凝土收縮而引起裂縫。
6.6施工時拆模過早,混凝土強度不足,使得構件在自重或施工荷載作用下產生裂縫。
6.7施工質量控制差。任意套用混凝土配合比,水、砂石、水泥材料計量不準,結果造成混凝土強度不足和其他性能(和易性、密實度)下降,導致結構開裂。S316線K103+620、K109+360、K110+100等處橋梁、墩臺、臺帽等處出現裂縫較多。7混凝土橋梁裂縫處治方法—“壁可注入法”
第一步表面處理
用綱絲刷沿裂縫表面清理寬約5cm范圍;用刷子丙酮或清水清除裂縫表面的浮塵并晾干。
第二步粘結注入座和密封裂縫
(1)配置封口膠按配合比(101#號的主擠、硬化擠的重量比為7:3)配料拌和均勻。
(2)布設注入座用抹灰刀將少許封口膠抹在注入座底面的四周,將注入孔對正裂縫中心輕微擠壓,并用封口膠將注入座包覆,沿裂縫的走向每隔30-40cm布設一個注入座,裂縫分岔處也應布設注入座。
(3)封閉裂縫用工具抹灰刀將封口膠沿裂縫的走向5cm寬的范圍封閉,封口膠厚度為2mm左右,盡量一次性完成。
第三步封口膠的固化
封閉完成后,讓封口膠自然固化,固化時間:在正常溫度下(6小間-12小間)
第四步注入灌注膠
(1)可配置封口膠按配合比(主劑、硬化劑的重量比為2:1)配料拌和均勻。
(2)注膠將注入器的連接端牢固地安裝在注入座上,將灌注膠裝入注入泵黃油槍內,將黃油槍倒置,打開伐門推動活塞排除系統中的空氣。將它連接
到注入器的注入端,推動黃油槍的活塞,開始注入。
第五步灌注膠的固化
讓灌注膠自行固化,固化時間:大約24小時,與溫度有關。
第六步“壁可注入法”的特點
(1)灌注膠具有超低粘度性、滲透力強、粘結力強、具有較高強度。
(2)可恢復混凝土構件的強度,恢復受損構件的承載力。
(3)利用注入器“橡膠管”膨脹后產生恒壓力,將膠液自動注入到裂縫深處,持續的低壓能避免產生氣阻,保證修補質量。
(4)施工工藝簡便,易操作使用,節省人工,安全環保。
第七步“壁可注入法”使用效果
2007年6月特克斯公路段通過使用“壁可注入法”對管轄路段的S316線路段,25座橋梁構件,墩臺、梁板底、的縱橫超限值的裂縫,經過現場使用效果良好。截止目前為止未出現開裂,擴張現象。
結論:公路建設是一項基本建設,只要我們在設計、施工工藝、材料選擇以及后期的養護過程中能夠充分考慮各種因素的影響,還是完全可以避免的,危害結構的裂縫的產生。
參考文獻
[1]《公路橋涵施工技術規范》(JTJ041-2000).
1前言
近年來,隨著國民經濟和建筑技術的發展,建筑規模不斷擴大,大型現代化技術設施或構筑物不斷增多,而混凝土結構以其材料廉價物美、施工方便、承載力大、可裝飾強的特點,日益受到人們的歡迎,于是大體積混凝土逐漸成為構成大型設施或構筑物主體的重要組成部分。所謂大體積混凝土,一般理解為尺寸較大的混凝土,美國混凝土學會給出了大體積混凝土的定義:任何現澆混凝土,其尺寸達到必須解決水化熱及隨之引起的體積變形問題,以最大限度的減少開裂影響的,即稱為大體積混凝土。這就提出了大體積混凝土開裂的問題,開裂問題是在工程建設中帶有一定普遍性的技術問題,裂縫一旦形成,特別是基礎貫穿裂縫出現在重要的結構部位,危害極大,它會降低結構的耐久性,削弱構件的承載力,同時會可能危害到建筑物的安全使用。所以如何采取有效措施防止大體積混凝土的開裂,是一個值得關注的問題。
2大體積混凝土裂縫形成的原因
裂縫產生的原因可分為兩類:一是結構型裂縫,是由外荷載引起的,包括常規結構計算中的主要應力以及其他的結構次應力造成的受力裂縫。二是材料型裂縫,是由非受力變形變化引起的,主要是由溫度應力和混凝土的收縮引起的。本文主要探討材料型裂縫。其中具體原因如下。
2.1溫度應力引起裂縫(溫度裂縫)
目前溫度裂縫產生主要原因是由溫差造成的。溫差可分為以下三種:混凝土澆注初期,產生大量的水化熱,由于混凝土是熱的不良導體,水化熱積聚在混凝土內部不易散發,常使混凝土內部溫度上升,而混凝土表面溫度為室外環境溫度,這就形成了內外溫差,這種內外溫差在混凝土凝結初期產生的拉應力當超過混凝土抗壓強度時,就會導致混凝土裂縫;另外,在拆模前后,表面溫度降低很快,造成了溫度陡降,也會導致裂縫的產生;當混凝土內部達到最高溫度后,熱量逐漸散發而達到使用溫度或最低溫度,它們與最高溫度的差值就是內部溫差;這三種溫差都會產生溫度裂縫。在這三種溫差中,較為主要是由水化熱引起的內外溫差。
2.2收縮引起裂縫
收縮有很多種,包括干燥收縮、塑性收縮、自身收縮、碳化收縮等等。這里主要介紹干燥收縮和塑性收縮。
2.2.1干燥收縮
混凝土硬化后,在干燥的環境下,混凝土內部的水分不斷向外散失,引起混凝土由外向內的干縮變形裂縫。
2.2.2塑性收縮
在水泥活性大、混凝土溫度較高,或在水灰比較低的條件下會加劇引起開裂。因為這時混凝土的泌水明顯減少,表面蒸發的水分不能及時得到補充,這時混凝土尚處于塑性狀態,稍微受到一點拉力,混凝土的表面就會出現分布不均勻的裂縫,出現裂縫以后,混凝土體內的水分蒸發進一步加大,于是裂縫進一步擴展。
3防止裂縫的措施
由以上分析,材料型裂縫主要是由溫差和收縮引起,所以為了防止裂縫的產生,就要最大限度的降低溫差和減小混凝土的收縮,具體措施如下。
3.1優選原材料
3.1.1水泥
由于溫差主要是由水化熱產生的,所以為了減小溫差就要盡量降低水化熱,為了降低水化熱,要盡量采取早期水化熱低的水泥,由于水泥的水化熱是礦物成分與細度的函數,要降低水泥的水化熱,主要是選擇適宜的礦物組成和調整水泥的細度模數,硅酸鹽水泥的礦物組成主要有:C3S、C2S、C3A和C4AF,試驗表明:水泥中鋁酸三鈣(C3A)和硅酸三鈣(C3S)含量高的,水化熱較高,所以,為了減少水泥的水化熱,必須降低熟料中C3A和C3S的含量。在施工中一般采用中熱硅酸鹽水泥和低熱礦渣水泥。另外,在不影響水泥活性的情況下,要盡量使水泥的細度適當減小,因為水泥的細度會影響水化熱的放熱速率,試驗表明比表面積每增加100cm2/g,1d的水化熱增加17J/g~21J/g,7d和20d均增加4J/g~12J/g。
3.1.2摻加粉煤灰
為了減少水泥用量,降低水化熱并提高和易性,我們可以把部分水泥用粉煤灰代替,摻入粉煤灰主要有以下作用:①由于粉煤灰中含有大量的硅、鋁氧化物,其中二氧化硅含量40%~60%,三氧化二鋁含量17%~35%,這些硅鋁氧化物能夠與水泥的水化產物進行二次反應,是其活性的來源,可以取代部分水泥,從而減少水泥用量,降低混凝土的熱脹;②由于粉煤灰顆粒較細,能夠參加二次反應的界面相應增加,在混凝土中分散更加均勻;③同時,粉煤灰的火山灰反應進一步改善了混凝土內部的孔結構,使混凝土中總的孔隙率降低,孔結構進一步的細化,分布更加合理,使硬化后的混凝土更加致密,相應收縮值也減少。
值得一提的是:由于粉煤灰的比重較水泥小,混凝土振搗時比重小的粉煤灰容易浮在混凝土的表面,使上部混凝土中的摻合料較多,強度較低,表面容易產生塑性收縮裂縫。因此,粉煤灰的摻量不宜過多,在工程中我們應根據具體情況確定粉煤灰的摻量。
3.1.3骨料
(1)粗骨料
盡量擴大粗骨料的粒徑,因為粗骨料粒徑越大,級配越好,孔隙率越小,總表面積越小,每立方米的用水泥砂漿量和水泥用量就越小,水化熱就隨之降低,對防止裂縫的產生有利。
(2)細骨料
宜采用級配良好的中砂和中粗砂,最好用中粗砂,因為其孔隙率小,總表面積小,這樣混凝土的用水量和水泥用量就可以減少,水化熱就低,裂縫就減少,另一方面,要控制砂子的含泥量,含泥量越大,收縮變形就越大,裂縫就越嚴重,因此細骨料盡量用干凈的中粗沙。
3.1.4加入外加劑
加入外加劑后能減小混凝土收縮開裂的機會,外加劑對混凝土收縮開裂性能有以下影響:
(1)減水劑對混凝土開裂的影響
減水劑的主要作用改善混凝土的和易性,降低水灰比,提高混凝土強度或在保持混凝土一定強度時減少水泥用量,而水灰比的降低,水泥用量的減少對防止開裂是十分有利的。
(2)緩凝劑對混凝土開裂的影響
緩凝劑的作用一是延緩混凝土放熱峰值出現的時間,由于混凝土的強度會隨齡期的增長而增大,所以等放熱峰值出現時,混凝土強度也增大了,從而減小裂縫出現的機率,二是改善和易性,減少運輸過程中的塌落度損失。
(3)引氣劑對混凝土開裂的影響
引氣劑在混凝土的應用對改善混凝土的和易性、可泵性、提高混凝土耐久性能十分有利。在一定程度上增大混凝土的抗裂性能。在這里值得注意的是:外加劑不能摻量過大,否則會產生負面影響,在GB8076~1977中規定,摻有外加劑的混凝土,28d的收縮比不得大于135%,即摻有外加劑的混凝土收縮比基準混凝土的收縮不得大于35%。
3.2采用合理的施工方法
3.2.1混凝土的拌制
(1)在混凝土拌制過程中,要嚴格控制原材料計量準確,同時嚴格控制混凝土出機塌落度。
(2)要盡量降低混凝土拌合物出機口溫度,拌合物可采取以下兩種降溫措施:一是送冷風對拌和物進行冷卻,二是加冰拌合,一般使新拌混凝土的溫度控制在6℃左右。
3.2.2混凝土澆注、拆模
(1)混凝土澆注過程質量控制
澆注過程中要進行振搗方可密實,振搗時間應均勻一致以表面泛漿為宜,間距要均勻,以振搗力波及范圍重疊二分之一為宜,澆注完畢后,表面要壓實、抹平,以防止表面裂縫。另外,澆注混凝土要求分層澆注,分層流水振搗,同時要保證上層混凝土在下層初凝前結合緊密。避免縱向施工縫、提高結構整體性和抗剪性能。
(2)澆注時間控制
盡量避開在太陽輻射較高的時間澆注,若由于工程需要在夏季施工,則盡量避開正午高溫時段,澆注盡量安排在夜間進行。
(3)混凝土拆模時間控制
混凝土在實際溫度養護的條件下,強度達到設計強度的75%以上,混凝土中心與表面最低溫度控制在25℃以內,預計拆模后混凝土表面溫降不超過9℃以上允許拆模。
3.2.3做好表面隔熱保護
大體積混凝土的溫度裂縫,主要是由內外溫差過大引起的。混凝土澆注后,由于內部較表面散熱快,會形成內外溫差,表面收縮受內部約束產生拉應力,但是這種拉應力通常很小,不至于超過混凝土的抗拉強度而產生裂縫。但是如果此時受到冷空氣的襲擊,或者過分通風散熱,使表面溫度降溫過大就很容易導致裂縫的產生,所以在混凝土在拆模后,特別是低溫季節,在拆模后立即采取表面保護。防止表面降溫過大,引起裂縫。另外,當日平均氣溫在2~3d內連續下降不小于6~8℃時,28d齡期內混凝土表面必須進行表面保護。
3.2.4養護
混凝土澆注完畢后,應及時灑水養護以保持混凝土表面經常濕潤,這樣既減少外界高溫倒罐,又防止干縮裂縫的發生,促進混凝土強度的穩定增長。一般在澆注完畢后12~18h內立即開始養護,連續養護時間不少于28d或設計齡期。
3.2.5通水冷卻
若是在高溫季節施工,則要在初期采用通制冷水來降低混凝土最高溫度峰值,但注意,通水時間不能過長,因為時間過長會造成降溫幅度過大而引起較大的溫度應力。為了削減內外溫差,還應在夏末秋初進行中期通水冷卻,中期通水一般采用河水,通水歷時兩個月左右。后期通水是使混凝土柱狀塊達到接縫灌漿的必要措施,一般采用通河水和通制冷水相結合的方案。
4結語
大體積混凝土的開裂是目前學者和工程界關注的一個重要問題,通過以上分析可知,大體積混凝土的材料型裂縫主要是由溫度應力和混凝土的收縮引起的,筆者認為精心選擇原材料,并在施工中采用合理的方法,能有效的防止裂縫的發生。
[參考文獻]
[1]龔召熊:水工混凝土的溫控與防裂.北京:中國水利水電出版社,1999
[2]戴鎮潮:大體積混凝土的防裂.混凝土,2001,(9):10
[3]覃維祖:混凝土的收縮、開裂及其評價與防治.混凝土,2001,(7):3
[4]遲陪云:大體積混凝土開裂的起因及防裂措施.混凝土,2001,(12):31
混凝土工程中材料的特性決定了結構較易產生裂縫,從實踐中來看施工中混凝土出現裂縫的概率也是很大的,相當一部分裂縫對建筑物的受力及正常使用無太大的危害,但裂縫的存在會影響到建筑物的整體性、耐久性,會對鋼筋產生腐蝕,是受力使用期應力集中的隱患,應當盡量在各方面給予重視,以避免裂縫的出現或把裂縫控制在許可的范圍之內。
一、高層建筑施工中幾個特殊部位的裂縫分析
1、大體積基礎混凝土板
高層建筑中隨著高度的不斷增加,地下室愈做愈深,底板也愈來愈厚,厚度在3m以上的底板已屢見不鮮。高層建筑中基礎底板為主要的受力結構,整體要求高,一般一次性整體澆筑。國內外大量實踐證明,各種大體積混凝土裂縫主要是溫度變化引起。大體積混凝土澆筑后在升溫階段由于體積大,集聚在內部的水泥水化熱不易散發,混凝土內部溫度將顯著升高,這樣在混凝土內部產生壓應力,在外表面產生拉應力,由于此時混凝土的強度低,有可能產生表面裂縫。在降溫階段新澆混凝土收縮因存在較強的地基或基礎的約束而不能自由收縮。升溫階段快,混凝土彈性模量低,徐變的影響大,所以降溫時產生的拉應力大于升溫時產生的壓應力。差值過大時,將在混凝土內部產生裂縫,最后有可能形成貫穿裂縫。為解決上述二類裂縫問題,必須進行合理的溫度控制。
混凝土溫度控制的主要目的是使因溫差產生的拉應力小于同期混凝土抗拉強度的標準值,并有一定的安全系數。為計算溫差,就要事先計算混凝土內部的最高溫度,它是混凝土澆筑溫度、實際水化熱溫升和混凝土散熱溫度的總和。混凝土內部的最高溫度大多發生在澆筑后的3~7天。混凝土內部的最高溫度Tmax可按下式計算:
Tmax=To+(WQ)/(Cr)ξ+(F)/(5O)(1)
式中:T0——混凝土的澆筑溫度(℃)
W——每m3混凝土中水泥(礦渣硅酸鹽水泥)的用量(kg/m3)
F——每m3混凝土中粉煤灰的用量(kg/m3)
Q——每kg水泥水化熱(J/kg)
C——混凝土的比熱
r——混凝土的密度
ξ——不同厚度的澆筑塊散熱系數(見表1)
不同厚度的澆筑塊散熱系數
表1
------------------------------------------------
厚度(m)1.01.52.02.53.03.54.0>4.0
ξ0.230.350.480.610.730.830.951.0
------------------------------------------------
實測資料顯示,當基礎板厚大于2米時,上述公式的相對誤差在0.1%~1.3%之間,在計算溫差后,即可計算出降溫階段混凝土內部的溫度應力σ(2)xmax
σxmax=EαT(1-(1)/(coshβL/2))H(t,τ)………(2)
式中:E——混凝土的彈性模量(N/mm2)
α——混凝土的線膨脹系數(10-5/℃)
T——溫差(℃)
L——板長(mm)
β=Cx/HE
H——板厚(mm)H>0.2L時,取H=0.2L
Cx——地基水平阻力系數(N/mm3)
H(t,τ)…考慮徐變后的混凝土松馳系數,
其中,t——產生約束應力時的齡期,τ——約束應力延續時間。
注意同期內由于混凝土收縮引起的應力應轉化為當量溫差,計入T一并計算σxmax。
由(1)、(2)分析可知:為避免裂縫出現,主要是減少T。可采用合理選用材料,降低水泥水化熱,優化混凝土集料的配合比,控制水灰比,減少混凝土的干縮,具體控制措施見后。如有可能,減少澆筑長度L,增加養護時間減少降溫速率以相應減少松馳系數對控制貫穿裂縫也有一定的意義。
2、地下室混凝土墻板及樓板的裂縫分析
地下室墻板的裂縫產生與基礎大體積混凝土裂縫產生的原因有相同之處,即混凝土在硬化過程中由于失水會產生收縮應變,在水泥水化熱產生的升溫達到最高點以后的降溫過程會產生溫度應變。但又有其特點:一是墻板受到基礎、樓板受到地下室外墻的極大約束,這種約束遠大于樁基對基礎的約束,產生貫穿裂縫的機率大。二是內墻板及樓板受環境溫度影響較大。三是內外溫差小,產生表面裂縫的機率小。四是養護困難,散熱快、降溫速率大,混凝土的松馳徐變優勢難以利用,在氣溫驟變季節尤應注意。
在計算板內最大拉應力時仍可利用公式(2),但有以下幾點應注意:
1)H取0.2L,L為整澆長度;
2)Cx取值應大于1.5N/mm3因為連接部位有較強鋼筋約束;
3)計算溫差T時,要考慮底板及外墻(兼作圍護情況下)緊靠土體,受環境溫差小,而被它們約束的墻板及周邊樓板在施工過程中基本同外界溫度同步變化。
4)若底板墻板施工間隔過長、外墻兼作圍護時,則在計算混凝土收縮時應注意約束體與被約束體的收縮期不同,收縮量也不相同。
3、高強混凝土裂縫分析
目前高層建筑中已廣泛使用C40~C60中高強混凝土,隨著材料科學的迅速發展,C80~C120的高強混凝土在具體工程中已有應用。由于高強混凝土采用的配合比設計多為低水灰比、高標號水泥、高水泥用量、使用高效減小劑及摻加超細礦粉。這樣其收縮機制與普通混凝土就有所不同。
高強混凝土由于其水泥用量大多在450~600kg/m3),是普通混凝土的1.5~2倍。這樣在混凝土生成過程中由于水泥水化而引起的體積收縮即自縮就大于普通混凝土,出現收縮裂縫的機率也大于普通混凝土。
高強混凝土因采用高標號水泥且用量大,這樣在混凝土硬化過程中,水化放熱量大,將加大混凝土的最高溫升,從而使混凝土的溫度收縮應力加大。在疊加其他因素的情況下,很有可能導致溫度收縮裂縫。由于高強混凝土中水泥石含量是普通混凝土的1.5倍,在硬化早期由于水分蒸發引起的干縮也將大于普通混凝土。
二、裂縫的控制措施
1、設計措施
1)增配構造筋提高抗裂性能,配筋應采用小直徑、小間距。全截面的配筋率應在0.3~0.5%之間。
2)避免結構突變產生應力集中,在易產生應力集中的薄弱環節采取加強措施。
3)在易裂的邊緣部位設置暗梁,提高該部位的配筋率,提高混凝土的極限拉伸。
4)在結構設計中應充分考慮施工時的氣候特征,合理設置后澆縫,在正常施工條件下,后澆縫間距20~30m,保留時間一般不小于60天。如不能預測施工時的具體條件,也可臨時根據具體情況作設計變更。
2、施工措施
1)嚴格控制混凝土原材料的的質量和技術標準,選用低水化熱水泥,粗細骨料的含泥量應盡量減少(1~1.5%以下)。
2)細致分析混凝土集料的配比,控制混凝土的水灰比,減少混凝土的坍落度,合理摻加塑化劑和減少劑。
3)澆筑時間盡量安排在夜間,最大限度降低混凝土的初凝溫度。白天施工時要求在沙、石堆場搭設簡易遮陽裝置,或用濕麻袋覆蓋,必要時向骨料噴冷水。混凝土泵送時,在水平及垂直泵管上加蓋草袋,并噴冷水。
4)根據工程特點,可以利用混凝土后期強度,這樣可以減少用水量,減少水化熱和收縮。
5)加強混凝土的澆灌振搗,提高密實度。
6)混凝土盡可能晚拆模,拆模后混凝土表面溫度不應下降15℃以上,混凝土的現場試塊強度不低于C5。