<dfn id="a4kkq"></dfn>
<ul id="a4kkq"></ul>
    • 數學建模論文大全11篇

      時間:2023-02-27 11:15:30

      緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的11篇數學建模論文范文,希望它們能為您的寫作提供參考和啟發。

      數學建模論文

      篇(1)

      某市教育局組織了一項競賽,聘請了來自不同學校的數名教師做評委組成評判組。本次競賽制定四條評分規則,內容如下:

      (1)評委對本校選手不打分。

      (2)每位評委對每位參賽選手(除本校選手外)都必須打分,且所打分數不相同。

      (3)評委打分方法為:倒數第一名記1分,倒數第二名記2分,依次類推。

      (4)比賽結束后,求出各選手的平均分,按平均分從高到低排序,依此確定本次競賽的名次,以平均分最高者為第一名,依次類推。

      本次比賽中,選手甲所在學校有一名評委,這位評委將不參加對選手甲的評分,其他選手所在學校無人擔任評委。

      (Ⅰ)公布評分規則后,其他選手覺得這種評分規則對甲更有利,請問這種看法是否有道理?(請說明理由)

      (Ⅱ)能否給這次比賽制定更公平的評分規則?若能,請你給出一個更公平的評分規則,并說明理由。

      本題是一道開放性很強的好題,給學生留有很大的發揮空間,不少學生都有精彩的表現,例如關于評分規則的修正,就有下列幾種方案:

      方案1:將選手甲所在學校評委的評分方法改為倒數第一名記1+分,倒數第二名記2+,…依次類推;(評分標準)

      方案2:將選手甲所在學校評委的評分方法改為在原來的基礎上乘以;

      方案3:對甲評分時,用其他評委的平均分計做甲所在學校評委的打分;

      然而也有不少學生為空白,究其原因可能除了時間因素,學生對于較長的文字表述產生畏懼心理、不能正確閱讀是重要因素。同時,一些學生由于不能正確理解規則(3),得出選手甲的平均得分為,其他選手的平均得分為,從而得出錯誤結論.不少學生出現“甲所在學校的評委會故意壓低其他選手的分數,因而對甲有利”的解釋,而沒有意識到作出必要的假設是數學建模方法中的重要且必要的一環。有些學生在正確理解題意的基礎上,提出了“規則對甲有利”的理由,例如:排名在甲前的同學少得了1分;甲所在學校的評委不給其他選手最高分(n分),所以甲得最高分的概率比其他選手高;相當于甲所在學校的評委把最高分給了甲;甲少拿一個分數,若少拿最低分,則有利;若少拿最高分,則不利;等等。以上各種想法都有道理,遺憾的是大部分學生僅僅停留在這些感性認識和文字說明上,沒能進一步引進數學模型和數學符號去進行理性的分析。如何衡量規則的公平性是本題的關鍵,也是建模的原則。很少有學生能夠明確提出這個原則,有些學生在第2問評分規則的修正中,提出“將甲所在學校的評委從評判組中剔除掉”,這種辦法違背實際的要求。有些學生被生活中一些現象誤導,提出“去掉最高分和最低分”的評分規則修正方法,而不去從數學的角度分析和研究。

      通過對這道高中數學知識應用競賽題解答情況的分析,我們了解到學生數學建模意識和建模能力的現狀不容樂觀。學生在數學應用能力上存在的一些問題:(1)數學閱讀能力差,誤解題意。(2)數學建模方法需要提高。(3)數學應用意識不盡人意數學建模意識很有待加強。新課程標準給數學建模提出了更高的要求,也為中學數學建模的發展提供了很好的契機,相信隨著新課程的實施,我們高中生的數學建模意識和建模能力會有大的提高!

      那么高中的數學建模教學應如何進行呢?數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。不同于傳統的教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作。通過教學使學生了解利用數學理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力。數學建模以學生為主,教師利用一些事先設計好的問題,引導學生主動查閱文獻資料和學習新知識,鼓勵學生積極開展討論和辯論,主動探索解決之法。教學過程的重點是創造一個環境去誘導學生的學習欲望、培養他們的自學能力,增強他們的數學素質和創新能力,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。

      (一)在教學中傳授學生初步的數學建模知識。

      中學數學建模的目的旨在培養學生的數學應用意識,掌握數學建模的方法,為將來的學習、工作打下堅實的基礎。在教學時將數學建模中最基本的過程教給學生:利用現行的數學教材,向學生介紹一些常用的、典型的數學模型。如函數模型、不等式模型、數列模型、幾何模型、三角模型、方程模型等。教師應研究在各個教學章節中可引入哪些數學基本模型問題,如儲蓄問題、信用貸款問題可結合在數列教學中。教師可以通過教材中一些不大復雜的應用問題,帶著學生一起來完成數學化的過程,給學生一些數學應用和數學建模的初步體驗。

      例如在學習了二次函數的最值問題后,通過下面的應用題讓學生懂得如何用數學建模的方法來解決實際問題。例:客房的定價問題。一個星級旅館有150個客房,經過一段時間的經營實踐,旅館經理得到了一些數據:每間客房定價為160元時,住房率為55%,每間客房定價為140元時,住房率為65%,

      每間客房定價為120元時,住房率為75%,每間客房定價為100元時,住房率為85%。欲使旅館每天收入最高,每間客房應如何定價?

      [簡化假設]

      (1)每間客房最高定價為160元;

      (2)設隨著房價的下降,住房率呈線性增長;

      (3)設旅館每間客房定價相等。

      [建立模型]

      設y表示旅館一天的總收入,與160元相比每間客房降低的房價為x元。由假設(2)可得,每降價1元,住房率就增加。因此

      由可知

      于是問題轉化為:當時,y的最大值是多少?

      [求解模型]

      利用二次函數求最值可得到當x=25即住房定價為135元時,y取最大值13668.75(元),

      [討論與驗證]

      (1)容易驗證此收入在各種已知定價對應的收入中是最大的。如果為了便于管理,定價為140元也是可以的,因為此時它與最高收入只差18.75元。

      (2)如果定價為180元,住房率應為45%,相應的收入只有12150元,因此假設(1)是合理的。

      (二)培養學生的數學應用意識,增強數學建模意識。

      首先,學生的應用意識體現在以下兩個方面:一是面對實際問題,能主動嘗試從數學的角度運用所學知識和方法尋求解決問題的策略,學習者在學習的過程中能夠認識到數學是有用的。二是認識到現實生活中蘊含著大量的數學信息,數學在現實世界中有著廣泛的應用:生活中處處有數學,數學就在他的身邊。其次,關于如何培養學生的應用意識:在數學教學和對學生數學學習的指導中,介紹知識的來龍去脈時多與實際生活相聯系。例如,日常生活中存在著“不同形式的等量關系和不等量關系”以及“變量間的函數對應關系”、“變相間的非確切的相關關系”、“事物發生的可預測性,可能性大小”等,這些正是數學中引入“方程”、“不等式”、“函數”“變量間的線性相關”、“概率”的實際背景。另外鍛煉學生學會運用數學語言描述周圍世界出現的數學現象。數學是一種“世界通用語言”它能夠準確、清楚、間接地刻畫和描述日常生活中的許多現象。應讓學生養成運用數學語言進行交流的習慣。例如,當學生乘坐出租車時,他應能意識到付費與行駛時間或路程之間具有一定的函數關系。鼓勵學生運用數學建模解決實際問題。首先通過觀察分析、提煉出實際問題的數學模型,然后再把數學模型納入某知識系統去處理,當然這不但要求學生有一定的抽象能力,而且要有相當的觀察、分析、綜合、類比能力。學生的這種能力的獲得不是一朝一夕的事情,需要把數學建模意識貫穿在教學的始終,也就是要不斷的引導學生用數學思維的觀點去觀察、分析和表示各種事物關系、空間關系和數學信息,從紛繁復雜的具體問題中抽象出我們熟悉的數學模型,進而達到用數學模型來解決實際問題,使數學建模意識成為學生思考問題的方法和習慣。通過教師的潛移默化,經常滲透數學建模意識,學生可以從各類大量的建模問題中逐步領悟到數學建模的廣泛應用,從而激發學生去研究數學建模的興趣,提高他們運用數學知識進行建模的能力。

      (三)在教學中注意聯系相關學科加以運用

      在數學建模教學中應該重視選用數學與物理、化學、生物、美學等知識相結合的跨學科問題和大量與日常生活相聯系(如投資買賣、銀行儲蓄、測量、乘車、運動等方面)的數學問題,從其它學科中選擇應用題,通過構建模型,培養學生應用數學工具解決該學科難題的能力。例如,高中生物學科以描述性的語言為主,有的學生往往以為學好生物學是與數學沒有關系的。他們尚未樹立理科意識,缺乏理科思維。比如:他們不會用數學上的排列與組合來分析減數分裂過程配子的基因組成;也不會用數學上的概率的相加、相乘原理來解決一些遺傳病機率的計算等等。這些需要教師在平時相應的課堂內容教學中引導學生進行數學建模。因此我們在教學中應注意與其它學科的呼應,這不但可以幫助學生加深對其它學科的理解,也是培養學生建模意識的一個不可忽視的途徑。又例如教了正弦函數后,可引導學生用模型函數寫出物理中振動圖象或交流圖象的數學表達式。

      最后,為了培養學生的建模意識,中學數學教師應首先需要提高自己的建模意識。中學數學教師除需要了解數學科學的發展歷史和發展動態之外,還需要不斷地學習一些新的數學建模理論,并且努力鉆研如何把中學數學知識應用于現實生活。中學教師只有通過對數學建模的系統學習和研究,才能準確地的把握數學建模問題的深度和難度,更好地推動中學數學建模教學的發展。

      論文關鍵詞:數學建模數學應用意識數學建模教學

      論文摘要:為增強學生應用數學的意識,切實培養學生解決實際問題的能力,分析了高中數學建模的必要性,并通過對高中學生數學建模能力的調查分析,發現學生數學應用及數學建模方面存在的問題,并針對問題提出了關于高中進行數學建模教學的幾點意見。

      參考文獻:

      1.《問題解決的數學模型方法》北京師范大學出版社,1999.8

      篇(2)

      關鍵詞:認知心理學;思想;數學建模;認知結構;學習觀

      認知心理學(CognitivePsychology)興起于20世紀60年代,是以信息加工理論為核心,研究人的心智活動為機制的心理學,又被稱為信息加工心理學。它是認知科學和心理學的一個重要分支,它對一切認知或認知過程進行研究,包括感知覺、注意、記憶、思維和言語等[1]。當代認知心理學主要用來探究新知識的識記、保持、再認或再現的信息加工過程中關于學習的認識觀。而這一認識觀在學習中體現較突出的即為數學建模,它是通過信息加工理論對現實問題運用數學思想加以簡化和假設而得到的數學結構。本文通過構建數學模型將“認知心理學”的思想融入現實問題的處理,結合教學案例,并提出建立良好數學認知結構以及數學學習觀的原則和方法,進一步證實認知心理學思想在數學建模中的重要性。

      一、案例分析

      2011年微軟公司在招聘畢業大學生時,給面試人員出了這樣一道題:假如有800個形狀、大小相同的球,其中有一個球比其他球重,給你一個天平,請問你可以至少用幾次就可以保證找出這個較重的球?面試者中不乏名牌大學的本科、碩士甚至博士,可竟無一人能在有限的時間內回答上來。其實,后來他們知道這只是一道小學六年級“找次品”題目的變形。

      (一)問題轉化,認知策略

      我們知道,要從800個球中找到較重的一個球這一問題如果直接運用推理思想應該會很困難,如果我們運用“使復雜問題簡單化”這一認知策略,問題就會變得具體可行。于是,提出如下分解問題。問題1.對3個球進行實驗操作[2]。問題2.對5個球進行實驗操作。問題3.對9個球進行實驗操作。問題4.對4、6、7、8個球進行實驗操作。問題5.如何得到最佳分配方法。

      (二)模型分析,優化策略

      通過問題1和問題2,我們知道從3個球和5個球中找次品,最少并且保證找到次品的分配方法是將球分成3份。但這一結論只是我們對實驗操作的感知策略。為了尋找策略,我們設計了問題3,對于9個球的最佳分配方法也是分為3份。因此我們得到結論:在“找次品”過程中,結合天平每次只能比較2份這一特點,重球只可能在天平一端或者第3份中,同時,為了保證最少找到,9個球均分3份是最好的方法。能被3除盡的球我們得到均分這一優化策略,對于不能均分的球怎么分配?于是我們設計了問題4,通過問題4我們得到結論:找次品時,盡量均分為3份,若不能均分要求每份盡量一樣,可以多1個或少1個。通過問題解決,我們建立新的認知結構:2~3個球,1次;3+1~32個球,2次;32+1~33個球,3次;……

      (三)模型轉化,歸納策略

      通過將新的認知結構運用到生活實踐,我們知道800在36~37之間,所以我們得到800個球若要保證最少分配次數是7次。在認知心理學中,信息的具體表征和加工過程即為編碼。編碼并不被人們所覺察,它往往以“刺激”的形式表現為知覺以及思想。在信息加工過程中,固有的知識經驗、嚴密的邏輯思維能力以及抽象概況能力將為數學建模中能力的提高產生重要的意義。

      二、數學建模中認知心理學思想融入

      知識結構和認知結構是認知心理學的兩個基本概念[3]。數學是人類在認識社會實踐中積累的經驗成果,它起源于現實生活,以數字化的形式呈現并用來解決現實問題。它要求人們具有嚴密的邏輯思維以及空間思維能力,并通過感知、記憶、理解數形關系的過程中形成一種認知模型或者思維模式。這種認知模型通常以“圖式”的形式存在于客體的頭腦,并且可以根據需要隨時提取支配。

      (一)我國數學建模的現狀

      《課程標準(2011年版)》將模型思想這一核心概念的引入成為數學學習的主要方向。其實,數學建模方面的文章最早出自1982年張景中教授論文“洗衣服的數學”以及“壘磚問題”。雖然數學建模思想遍布國內外,但是真正將數學建模融入教學,從生活事件中抽取數學素材卻很難。數學建模思想注重知識應用,通過提取已有“圖式”加工信息形成新的認知結構的方式內化形成客體自身的“事物結構”,其不僅具有解釋、判斷、預見功能,而且能夠提高學生學習數學的興趣和應用意識[4]。

      (二)結合認知心理學思想,如何形成有效的數學認知結構

      知識結構與智力活動相結合,形成有效認知結構。我們知道,數學的知識結構是前人在總結的基礎上,通過教學大綱、教材的形式呈現,并通過語言、數字、符號等形式詳細記述的。學生在學習時,通過將教材中的知識簡約化為特定的語言文字符號的過程叫作客體的認知結構,這一過程中,智力活動起了重要作用。復雜的知識結構體系、內心體驗以及有限的信息加工容量讓我們不得不針對內外部的有效信息進行篩選。這一過程中,“注意”起到重要作用,我們在進行信息加工時,只有將知識結構與智力活動相結合,增加“有意注意”和“有意后注意”,才能夠形成有效的數學認知結構。根據不同構造方式,形成有利認知結構。數學的知識結構遵循循序漸進規律,并具有嚴密的邏輯性和準確性,它是形成不同認知結構的基礎。學生頭腦中的認知結構則是通過積累和加工而來,即使數學的知識結構一樣,不同的人仍然會形成不同的認知結構。這一特點取決于客體的智力水平、學習能力。因此若要形成有利認知結構,必須遵循知識發展一般規律,注重知識的連貫性和順序性,考慮知識的積累,注重邏輯思維能力的提高。

      三、認知心理學思想下的數學學習觀

      學習是學習者已知的、所碰到的信息和他們在學習時所做的之間相互作用的結果[5]。如何將數學知識變為個體的知識,從認知心理學角度分析,即如何將數學的認知結構吸收為個體的認知結構,即建立良好的數學學習觀,這一課題成為許多研究者關注的對象。那么怎樣學習才能夠提高解決數學問題的能力?或者怎樣才能構建有效的數學模型,接下來我們將根據認知心理學知識,提出數學學習觀的構建原則和方法。

      (一)良好數學學習觀應該是“雙向產生式”的信息

      加工過程學習是新舊知識相互作用的結果,是人們在信息加工過程中,通過提取已有“圖式”將新輸入的信息與頭腦中已存儲的信息進行有效聯系而形成新的認知結構的過程[6]。可是,當客體對于已有“圖式”不知如何使用,或者當遇到可以利用“圖式”去解決的問題時不知道去提取相應的知識,學習過程便變得僵化、不知變通。譬如,案例中,即使大部分學生都學習了“找次品”這部分內容,卻只能用來解決比較明確的教材性問題,對于實際生活問題卻很難解決。學習應該是“雙向產生式”的信息加工過程,數學的靈活性在這方面得到了較好的體現。學習時應遵循有效記憶策略,將所學知識與該知識有聯系的其他知識結合記憶,形成“流動”的知識結構。例如在案例中,求800個球中較重球的最少次數,可以先從簡單問題出發,對3個球和5個球進行分析,猜測并驗證出一般分配方法。這一過程需要有效提取已有知識經驗,通過擬合構造,不僅可以提高學生學習興趣,而且能夠增強知識認識水平和思維能力。

      (二)良好數學學習觀應該具有層次化、條理化的認知結構

      如果頭腦中僅有“雙向產生式”的認知結構,當遇到問題時,很難快速找到解決問題的有效條件。頭腦中數以萬計“知識組塊”必須形成一個系統,一個可以大大提高檢索、提取效率的層次結構網絡。如案例,在尋找最佳分配方案時,我們可以把8個球中找次品的所有分配情況都羅列出來。這樣做,打破了“定勢”的限制,而以最少稱量次數為線索來重新構造知識,有助于提高學生發散思維水平,使知識結構更加具有層次化、條理化。在學習過程中,隨著頭腦中信息量的增多,層次結構網絡也會越來越復雜。因此,必須加強記憶的有效保持,鞏固抽象知識與具體知識之間的聯系,能夠使思維在抽象和現實之間靈活轉化。而這一過程的優化策略是有效練習。

      (三)良好數學學習觀應該具有有效的思維策略

      要想形成有效的數學學習觀,提高解決實際問題的能力,頭腦中還必須要形成有層次的思維策略,以便大腦在學習和信息加工過程中,策略性思維能夠有效加以引導和把控。通過調節高層策略知識與底層描述性及程序性知識之間的轉換,不斷反思頭腦思維策略是否恰當進而做出調整和優化。譬如,在案例中,思維經過轉化策略、尋找策略、優化策略、歸納總結四個過程,由一般特殊一般問題的求解也是思維由高層向底層再向高層轉換的層次性的體現。

      篇(3)

      數學建模可以提高學生的學習興趣,培養學生不怕吃苦、敢于戰勝困難的堅強意志,培養自律、團結的優秀品質,培養正確的數學觀。具體的調查表明,大部分學生對數學建模比較感興趣,并不同程度地促進了他們對于數學及其他課程的學習.有許多學生認為:"數學源于生活,生活依靠數學,平時做的題都是理論性較強,實際性較弱的題,都是在理想化狀態下進行討論,而數學建模問題貼近生活,充滿趣味性";"數學建模使我更深切地感受到數學與實際的聯系,感受到數學問題的廣泛,使我們對于學習數學的重要性理解得更為深刻"。數學建模能培養學生應用數學進行分析、推理、證明和計算的能力;用數學語言表達實際問題及用普通人能理解的語言表達數學結果的能力;應用計算機及相應數學軟件的能力;獨立查找文獻,自學的能力,組織、協調、管理的能力;創造力、想象力、聯想力和洞察力。由此,在高中數學教學中滲透數學建模知識是很有必要的。

      那么當前我國高中學生的數學建模意識和建模能力如何呢?下面是節自有關人士對某次競賽中的一道建模題目學生的作答情況所作的抽樣調查。題目內容如下:

      某市教育局組織了一項競賽,聘請了來自不同學校的數名教師做評委組成評判組。本次競賽制定四條評分規則,內容如下:

      (1)評委對本校選手不打分。

      (2)每位評委對每位參賽選手(除本校選手外)都必須打分,且所打分數不相同。

      (3)評委打分方法為:倒數第一名記1分,倒數第二名記2分,依次類推。

      (4)比賽結束后,求出各選手的平均分,按平均分從高到低排序,依此確定本次競賽的名次,以平均分最高者為第一名,依次類推。

      本次比賽中,選手甲所在學校有一名評委,這位評委將不參加對選手甲的評分,其他選手所在學校無人擔任評委。

      (Ⅰ)公布評分規則后,其他選手覺得這種評分規則對甲更有利,請問這種看法是否有道理?(請說明理由)

      (Ⅱ)能否給這次比賽制定更公平的評分規則?若能,請你給出一個更公平的評分規則,并說明理由。

      本題是一道開放性很強的好題,給學生留有很大的發揮空間,不少學生都有精彩的表現,例如關于評分規則的修正,就有下列幾種方案:

      方案1:將選手甲所在學校評委的評分方法改為倒數第一名記1+分,倒數第二名記2+,…依次類推;(評分標準)

      方案2:將選手甲所在學校評委的評分方法改為在原來的基礎上乘以;

      方案3:對甲評分時,用其他評委的平均分計做甲所在學校評委的打分;

      然而也有不少學生為空白,究其原因可能除了時間因素,學生對于較長的文字表述產生畏懼心理、不能正確閱讀是重要因素。同時,一些學生由于不能正確理解規則(3),得出選手甲的平均得分為,其他選手的平均得分為,從而得出錯誤結論.不少學生出現“甲所在學校的評委會故意壓低其他選手的分數,因而對甲有利”的解釋,而沒有意識到作出必要的假設是數學建模方法中的重要且必要的一環。有些學生在正確理解題意的基礎上,提出了“規則對甲有利”的理由,例如:排名在甲前的同學少得了1分;甲所在學校的評委不給其他選手最高分(n分),所以甲得最高分的概率比其他選手高;相當于甲所在學校的評委把最高分給了甲;甲少拿一個分數,若少拿最低分,則有利;若少拿最高分,則不利;等等。以上各種想法都有道理,遺憾的是大部分學生僅僅停留在這些感性認識和文字說明上,沒能進一步引進數學模型和數學符號去進行理性的分析。如何衡量規則的公平性是本題的關鍵,也是建模的原則。很少有學生能夠明確提出這個原則,有些學生在第2問評分規則的修正中,提出“將甲所在學校的評委從評判組中剔除掉”,這種辦法違背實際的要求。有些學生被生活中一些現象誤導,提出“去掉最高分和最低分”的評分規則修正方法,而不去從數學的角度分析和研究。

      通過對這道高中數學知識應用競賽題解答情況的分析,我們了解到學生數學建模意識和建模能力的現狀不容樂觀。學生在數學應用能力上存在的一些問題:(1)數學閱讀能力差,誤解題意。(2)數學建模方法需要提高。(3)數學應用意識不盡人意數學建模意識很有待加強。新課程標準給數學建模提出了更高的要求,也為中學數學建模的發展提供了很好的契機,相信隨著新課程的實施,我們高中生的數學建模意識和建模能力會有大的提高!

      那么高中的數學建模教學應如何進行呢?數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。不同于傳統的教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作。通過教學使學生了解利用數學理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力。數學建模以學生為主,教師利用一些事先設計好的問題,引導學生主動查閱文獻資料和學習新知識,鼓勵學生積極開展討論和辯論,主動探索解決之法。教學過程的重點是創造一個環境去誘導學生的學習欲望、培養他們的自學能力,增強他們的數學素質和創新能力,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。

      (一)在教學中傳授學生初步的數學建模知識。

      中學數學建模的目的旨在培養學生的數學應用意識,掌握數學建模的方法,為將來的學習、工作打下堅實的基礎。在教學時將數學建模中最基本的過程教給學生:利用現行的數學教材,向學生介紹一些常用的、典型的數學模型。如函數模型、不等式模型、數列模型、幾何模型、三角模型、方程模型等。教師應研究在各個教學章節中可引入哪些數學基本模型問題,如儲蓄問題、信用貸款問題可結合在數列教學中。教師可以通過教材中一些不大復雜的應用問題,帶著學生一起來完成數學化的過程,給學生一些數學應用和數學建模的初步體驗。

      例如在學習了二次函數的最值問題后,通過下面的應用題讓學生懂得如何用數學建模的方法來解決實際問題。例:客房的定價問題。一個星級旅館有150個客房,經過一段時間的經營實踐,旅館經理得到了一些數據:每間客房定價為160元時,住房率為55%,每間客房定價為140元時,住房率為65%,

      每間客房定價為120元時,住房率為75%,每間客房定價為100元時,住房率為85%。欲使旅館每天收入最高,每間客房應如何定價?

      [簡化假設]

      (1)每間客房最高定價為160元;

      (2)設隨著房價的下降,住房率呈線性增長;

      (3)設旅館每間客房定價相等。

      [建立模型]

      設y表示旅館一天的總收入,與160元相比每間客房降低的房價為x元。由假設(2)可得,每降價1元,住房率就增加。因此

      由可知

      于是問題轉化為:當時,y的最大值是多少?

      [求解模型]

      利用二次函數求最值可得到當x=25即住房定價為135元時,y取最大值13668.75(元),

      [討論與驗證]

      (1)容易驗證此收入在各種已知定價對應的收入中是最大的。如果為了便于管理,定價為140元也是可以的,因為此時它與最高收入只差18.75元。

      (2)如果定價為180元,住房率應為45%,相應的收入只有12150元,因此假設(1)是合理的。

      (二)培養學生的數學應用意識,增強數學建模意識。

      首先,學生的應用意識體現在以下兩個方面:一是面對實際問題,能主動嘗試從數學的角度運用所學知識和方法尋求解決問題的策略,學習者在學習的過程中能夠認識到數學是有用的。二是認識到現實生活中蘊含著大量的數學信息,數學在現實世界中有著廣泛的應用:生活中處處有數學,數學就在他的身邊。其次,關于如何培養學生的應用意識:在數學教學和對學生數學學習的指導中,介紹知識的來龍去脈時多與實際生活相聯系。例如,日常生活中存在著“不同形式的等量關系和不等量關系”以及“變量間的函數對應關系”、“變相間的非確切的相關關系”、“事物發生的可預測性,可能性大小”等,這些正是數學中引入“方程”、“不等式”、“函數”“變量間的線性相關”、“概率”的實際背景。另外鍛煉學生學會運用數學語言描述周圍世界出現的數學現象。數學是一種“世界通用語言”它能夠準確、清楚、間接地刻畫和描述日常生活中的許多現象。應讓學生養成運用數學語言進行交流的習慣。例如,當學生乘坐出租車時,他應能意識到付費與行駛時間或路程之間具有一定的函數關系。鼓勵學生運用數學建模解決實際問題。首先通過觀察分析、提煉出實際問題的數學模型,然后再把數學模型納入某知識系統去處理,當然這不但要求學生有一定的抽象能力,而且要有相當的觀察、分析、綜合、類比能力。學生的這種能力的獲得不是一朝一夕的事情,需要把數學建模意識貫穿在教學的始終,也就是要不斷的引導學生用數學思維的觀點去觀察、分析和表示各種事物關系、空間關系和數學信息,從紛繁復雜的具體問題中抽象出我們熟悉的數學模型,進而達到用數學模型來解決實際問題,使數學建模意識成為學生思考問題的方法和習慣。通過教師的潛移默化,經常滲透數學建模意識,學生可以從各類大量的建模問題中逐步領悟到數學建模的廣泛應用,從而激發學生去研究數學建模的興趣,提高他們運用數學知識進行建模的能力。

      (三)在教學中注意聯系相關學科加以運用

      在數學建模教學中應該重視選用數學與物理、化學、生物、美學等知識相結合的跨學科問題和大量與日常生活相聯系(如投資買賣、銀行儲蓄、測量、乘車、運動等方面)的數學問題,從其它學科中選擇應用題,通過構建模型,培養學生應用數學工具解決該學科難題的能力。例如,高中生物學科以描述性的語言為主,有的學生往往以為學好生物學是與數學沒有關系的。他們尚未樹立理科意識,缺乏理科思維。比如:他們不會用數學上的排列與組合來分析減數分裂過程配子的基因組成;也不會用數學上的概率的相加、相乘原理來解決一些遺傳病機率的計算等等。這些需要教師在平時相應的課堂內容教學中引導學生進行數學建模。因此我們在教學中應注意與其它學科的呼應,這不但可以幫助學生加深對其它學科的理解,也是培養學生建模意識的一個不可忽視的途徑。又例如教了正弦函數后,可引導學生用模型函數寫出物理中振動圖象或交流圖象的數學表達式。

      最后,為了培養學生的建模意識,中學數學教師應首先需要提高自己的建模意識。中學數學教師除需要了解數學科學的發展歷史和發展動態之外,還需要不斷地學習一些新的數學建模理論,并且努力鉆研如何把中學數學知識應用于現實生活。中學教師只有通過對數學建模的系統學習和研究,才能準確地的把握數學建模問題的深度和難度,更好地推動中學數學建模教學的發展。

      論文關鍵詞:數學建模數學應用意識數學建模教學

      論文摘要:為增強學生應用數學的意識,切實培養學生解決實際問題的能力,分析了高中數學建模的必要性,并通過對高中學生數學建模能力的調查分析,發現學生數學應用及數學建模方面存在的問題,并針對問題提出了關于高中進行數學建模教學的幾點意見。

      參考文獻:

      1.《問題解決的數學模型方法》北京師范大學出版社,1999.8

      篇(4)

      工具/原料

      調查收集的原始數據資料

      Word公式編輯器

      步驟/方法

      數學建模建模理念為:

      一、應用意識:要解決實際問題,結果、結論要符合實際;模型、方法、結果要易于理解,便于實際應用;站在應用者的立場上想問題,處理問題。

      二、數學建模:用數學方法解決問題,要有數學模型;問題模型的數學抽象,方法有普適性、科學性,不局限于本具體問題的解決。

      三、創新意識:建模有特點,更加合理、科學、有效、符合實際;更有普遍應用意義;不單純為創新而創新。

      當我們完成一個數學建模的全過程后,就應該把所作的工作進行小結,寫成論文。撰寫數學建模論文和參加大學生數學建模時完成答卷,在許多方面是類似的。事實上數學建模競賽也包含了學生寫作能力的比試,因此,論文的寫作是一個很重要的問題。建模論文主要包括以下幾個部分:

      一、摘要800字,簡明扼要(要求用一兩字左右,簡明扼要(字左右句話說明題目中解決的問題是什么、用什句話說明題目中解決的問題是什么、么模型解決的、求解方法是什么、么模型解決的、求解方法是什么、結果如何、有無改進和推廣)。有無改進和推廣)。

      二、問題的重述簡要敘述問題,對原題高度壓縮,切記不要把原題重述一遍。

      三、假設1.合理性:每一條假設,要符合實際情況,要合理;2.全面性:應有的假設必須要有,否則對解決問題不利,可有可無的假設可不要,有些假設完全是多余的,不要寫上去。

      四、建模與求解(60~70分)1.應有建模過程的分析,如線性規劃、非線模型中目標函數的推導過程,每一個約束條件的推導過程,切記不要一開始就抬出模型,顯得很突然。2.數學符號的定義要確切,集中放在顯要位置,以便查找。3.模型要正確、注意完整性。4.模型的先進性,創造性。5.敘述清楚求解的步驟。6.自編程序主要部分放在附錄中(所用數學自編程序主要部分放在附錄中。7.結果應放在顯要的位置,不要讓評卷人到處查找。

      五、穩定性分析、誤差分析、1、微分方程模型穩定性討論很重要。2、統計模型的誤差分析、靈敏度分析很重要。

      六、優缺點的討論1.優點要充分的表現出來,不要謙虛,有多少寫多少2.對于缺點適當分析,注意寫作技巧,要避重就輕。大事化小,小事化了。

      七、推廣和改進這是得高獎很重要的一環,如有創新思想即使不能完全完成也不要放棄,要保留下來。

      八、文字敘述要簡明扼要、條理清楚、步驟完整,語言表達能力要強。

      九、對題目中的數據進行處理問題對題目中數據不要任意改動,因問題求解需要可以進行處理。如何處理,應注意合理性。1.先按題給條件作一次。2.發表自己見解,合理修改題目。

      篇(5)

      教師作為教育工作的直接參與者,對提高學校的教學質量發揮著重要的作用,這就需要教師具有實踐教學的教育理念,既要精通理論知識和實踐能力,又要親自指導學生實踐,培養學生實踐能力。在教學模式上,打破傳統的講授教學模式,突出教學內容的實用性,讓實踐教學模式滲透到學生的財經學習過程中,使學生能夠充分利用所學知識提升自己的職業技能。

      (二)創新實踐教學手段

      學校應該緊跟時展,引進新的教學手段,把傳統的講授教學方式逐步轉變為運用多媒體、電子教程、投影儀等現代化教學方式上來,擺脫以往學習的枯燥乏味,活躍課堂氣氛,提高學生對于所學課程的學習興趣。師生之間加強交流溝通,促進教學質量的改進。再者,中職院校應充分利用已有的教學資源,提高教學效率。建立財經類綜合實踐實訓基地,不斷進行實訓基地各種教學制度的完善,明確自身管理職責,進行綜合實訓基地的統一規劃和管理,實現規范、科學的教學管理[3]。

      (三)強化教師團隊建設,培養學生綜合實踐能力

      在學校教學過程中,教師是教學活動的組織者和領導者,強化教師團隊建設是提高學生實踐能力的關鍵。在日常實踐教學過程中,應設立專業對口的實訓項目或是與校企單位進行合作,經過專業教師的指導,實現學生真正上崗實踐,通過所學理論在實際工作過程中的運用,能夠加快學生理論知識與實踐能力的整合,增強學生自身對財經類工作崗位的認識,樹立積極的職業觀和價值觀。實踐上崗教學模式,能夠培養學生的探索實踐能力,能夠在實際的實踐工作過程中,按照企業規定嚴格約束自己的行為,培養更多符合社會需要的實踐型人才。通過上崗實踐教學使學生在學習態度上有了重大的轉變,體驗到在企業中生存的基本法則,這種壓力激勵著他們不斷進取,使得學生的探究、分析問題、解決問題的能力得到了很大程度的提升[4]。

      篇(6)

      2數學建模融入數學課程是高職數學課改的有效切入點

      近年來,隨著全國大學生數學建模競賽的深入開展,數學建模教學和競賽培訓在全國高職院校如雨后春筍般蓬勃興起,并且有力的推動了高等數學課程教學改革。同時,許多院校的實踐經驗證明,在學時有限的情況下把數學建模的思想方法滲透到高等數學課程中來是高職數學課改的有效途徑。

      2.1數學建模融入數學課程能夠培養和提高學生的學習興趣

      學習興趣對學生的學習效果有著決定性的作用,只有讓學生培養對數學的學習興趣,才能從根本上解決高職數學教學中存在的問題。數學建模是一個將實際問題用數學的語言、方法,去近似刻畫、建立相應模型并加以解決的過程。數學建模的過程符合學生認知問題、處理問題、反思問題的全過程,能極大提高學生的學習主動性和數學的趣味性,學生能夠從實踐中體會到數學的作用,從而增加對數學學習的興趣。

      2.2數學建模思想融入數學課程能夠加快高職學校素質教育的步伐

      高等職業教育的培養目標是培養高素質技能型人才。要求既要能動腦又要能動手。因此高職教育的培養目標決定了數學教學應該以培養技能型人才為目的,理論知識服務于實際應用。高職學生畢業后將成為國家各行業的生力軍,如果他們能夠運用已有的數學知識與方法不斷革新工藝、改進方法、提高效率、增強產品競爭力,必將會為我國的建設與發展做出巨大貢獻。清華大學姜啟源教授曾說:相對于本科院校而言,以培養技能型、應用型人才為目標的高職院校,將數學建模作為數學教學的重要組成部分,更有其必要性和可行性。

      2.3數學建模思想融入數學課程能夠提升學生各方面的能力

      學生在學習過程中,通過對數學建模這種科學的前沿的教學方式的反復實踐,能夠有效地提高自己的各方面能力。由于建模對計算機的應用較多,所以能夠加強學生對計算機功能的掌握,數學建模需要將數學與其他知識相結合,需要極大的信息量和知識面,計算機能有效的擴大學生的知識面,使得學生能夠更全面科學的進行數學建模;同時,數學建模能培養學生的團隊意識和協作能力,學生也能通過建模來找到自己在團隊的合適位置。

      3數學建模教學實踐及學生創新能力的提高

      近年來,我院在把數學建模的思想方法融入高等數學課程方面進行了深入的探索與實踐,許多教學與實踐相結合的教學方法與手段以及新穎的教學內容正逐步進入高等數學課堂,對提高學生學習數學、應用數學的積極性,提高學生分析問題、解決問題的能力起到了非常大的作用。

      3.1融入數學建模思想精心設計教學內容

      按照“知識導入、案例展開、由淺入深、拓展思考”的思路精心設計課堂教學內容。由貼近生活.與實際聯系密切的趣味問題導入,在教學中創設問題情境,發散學生的思維,吸引學生積極動腦,主動地參與學習。同時鼓勵學生用已有的知識和經驗去推理、觀察、比較、分析、綜合、概括、歸納等尋求解決問題的方法,實現快樂學習的理念。在建模案例的挑選上,盡量從問題背景簡單,容易入手的題目開始,讓學生了解建模的一般過程,然后再由淺入深。每個案例之后設置拓展思考,培養探索精神,通過典型案例分析基本知識講解觸類旁通舉一反三,歸納總結掌握一類問題的處理方法的過程,達到應用數學能力的全面提升。實施情景案例、項目驅動、任務導向教學,在建立實際問題的模型過程中,穿插介紹必要的理論知識點,讓學生帶著問題學知識,并在實踐中運用知識、提升能力,理論教學與實踐教學相互滲透。

      篇(7)

      2.數學建模競賽有利于促進學生知識結構的完善。高校的理工科專業都開設很多基礎數學課,例如:高等數學、線性代數、概率統計、運籌學、微分方程等,目前這些課程基本上還是理論教學,主要以考試、考研為主要目標。由于缺少實際問題的應用,知識點相對分散,很多學生不知道學了有什么用,怎么用。那么如何將所學的基礎知識高效的立體組裝起來,并有針對性拓展和延伸,是一個重要的研究課題[3]。實踐表明:數學建模競賽對于促進大學生知識結構完善是一個極好的載體。例如在解決2009年賽題———眼科病床的合理安排的問題時,學生不僅要借助數理統計方法,找到醫院安排不同疾病手術時間的不合理性,還要結合運籌學給出新的病床安排方案,并結合實際情況評估新方案合理性;2014年賽題嫦娥三號軟著陸軌道設計與控制策略,參賽學生首先根據受力分析和數據,判斷出可能的變軌位置,再結合微分方程和控制論構建模型,并借助計算機軟件求解,找到較好的軌道設計方案。整個數學建模過程中,參賽學生將所學分散的數學知識點拼裝集成化,在知識體系上,數學建模實現了知識性、實踐性、創造性、綜合性、應用性為一體的過程;在知識結構上,數學建模實現了學生知識結構從單一型、集中型向復合型的轉變。

      3.數學建模競賽有利于培養學生的團隊協作精神,提高溝通能力。現代社會競爭日趨激烈,具備良好的團隊協作和溝通能力的優秀人才越來越受到社會的青睞。數學建模競賽也需要三個隊員組成一個團隊,因為要在規定的時間內完成確定選題,分析問題、建立模型、求解模型,結果分析,單靠一個人是很難完成的,這就必須要由團隊成員之間相互尊重、相互信任、互補互助,并且發揮團隊協作精神,才能讓團隊的工作效率發揮到最大。同時,數學建模作為一種創造性腦力活動,不僅要求團隊成員之間學會傾聽別人意見,還要善于提出自己的想法和見解,并清晰、準確地表達出來。團隊成員間良好的溝通能力,不僅可激發團隊成員的競賽熱情和動力,還可以形成更加默契、緊密的關系,從而使競賽團隊效益達到最大化。

      二、依托數學建模競賽,提升大學生創新實踐能力的對策

      1.以數學建模競賽為抓手,構建分層的數學建模教學體系,拓寬學生受益面。不同專業和年級學生的學習基礎、學習能力和培養的側重點都存在較大差異,構建數學建模層次化教學課程體系有利于增強學生學習和使用數學的興趣,讓更多的學生了解數學建模以及競賽,通過自己動手解決實際問題,更加真切感覺到數學的應用價值,切實增強數學的影響力,擴大學生的受益面。南京郵電大學、華南農業大學、重慶大學和南京理工大學等高校這些方面相關工作和經驗值得借鑒。因此,構建數學建模分層課程體系,在課程內容設置上,結合專業特色,有針對性設置教學方案和內容,逐步完善具有不同專業特色的數學建模教材,講義和數據庫、并保持定期更新,不斷深入推進創新教學理念[4];在課程時間的安排上,遵循循序漸進的基本思路,一、二年級大學生開設數學建模選修課,介紹數學建模的基本理論和一些基本建模方法,三年級、四年級和研究生階段開設創新性數學實驗課程,重點訓練學生應用數學知識解決實際問題的動手能力,并通過參加建模培訓、數學建模競賽以及課外科研活動,培養學生學習解決實際問題的能力;在課程目標的定位上,數學建模有別于其他的數學課程,集中體現在數學的應用、實踐與創新,因此,數學建模不僅是一門課程,同時也是一門集成各種技術來解決實際問題的工具[6]。

      2.以數學建模競賽為載體,搭建橫縱向科技服務平臺,擴大數學建模影響力。數學建模競賽的理念是“一次參賽,終身受益”,這就要求數學建模活動要立足高遠,不斷向縱深推進與發展,將數學建模應用融入服務國計民生。因此,選擇優秀本科學生、研究生和畢業生,結合大學生創新創業計劃,科研課題以及企事業單位關注的問題等,讓他們自己動手去調查數據,查閱相關建模問題的文獻資料,建立數學模型,借助軟件進行模型求解,最后獨立撰寫出建模科技論文或決策咨詢報告。全程參與“課外實習與科技活動”的方式,不僅實現了因需施教、因材施教的目標,還搭建了連接企業和學生的橋梁,不僅讓大學生創新創業落到實處,為企事業單位提供了智力支撐,真正實現所學知識服務社會。

      3.以數學建模競賽為平臺,加強教師的隊伍建設,提升教師教育教學能力。數學建模授課和指導教師的教育教學能力直接影響著學生的創新能力。教育教學能力是指教師從事教學活動、完成教學任務、指導學生學習所需要的各種能力和素質的總和。數學建模的教學與傳統數學教學相比,對教師的動手能力、教學內容駕馭能力、教學研究和創新能力等有較高的要求,因此,數學建模指導教師可以通過自主研修,網絡研修,參與集體備課、聽評課、教學研討等方式提高自身業務水平,同時積極參與賽區、全國組織的學習和培訓,加強交流,開闊視野,不斷地提高自我認知、認識水平。只有建成一支高素質、實力雄厚、結構合理、富有創新能力和協作精神的學科梯隊,數學建模整體水平才能有較大提升,才能適應數學建模發展的現實需要,切實有利于學生創新實踐能力的提高[6,7]。

      三、我校數學建模教學和競賽改革的實踐

      篇(8)

      目前數學廣泛應用于生物技術、生物醫學工程、現代化醫療器械、醫療診斷方法、藥物動力學以及心血管病理等醫學領域。數學在醫學中的應用引起了醫學的劃時代變革,而這些應用基本上都是通過建模得以實現。長期以來,醫學院校的高等數學課在學生心目中成為可有可無、無關緊要的課程。問題在于課程體系中缺乏一門將數學和醫學有機結合的課程——數學建模。它為醫學和數學之間架設起橋梁,教學內容注重培養學生運用數學知識解決實際問題的能力,同時促進理論知識形式,加深學生對數學概念定理本質的直觀理解,最大限度激發學生學習興趣,對傳統數學教育模式是個沖擊,相應教學方法必須進行改革。

      1、醫用數學建模課教學設計改革

      1.1 通過醫學問題,設計模型數學情境

      本著“學以致用”的原則,醫學院校開設數學建模課與傳統的醫學教學設計不同,數學建模課以實際醫學問題為出發點,學生在具備一定高等數學基礎知識的前提下,以醫學實際問題出發點,要求收集必要的數據,這部分可以留給學生作為課前預習。在處理復雜問題的時候,這個環節關鍵是:抓住問題的主要矛盾,舍去次要因素,對實際問題做適當假設,使復雜問題得到必要的簡化,為下一步模型建立打下基礎,從而在醫學問題中抽象出數學問題情境。

      1.2 運用數學知識,設計模型建立[1]

      這是整個教學環節成敗的關鍵,醫科高等數學教學有別于理工科,理工科高等數學的學時較多,教學內容設計的系統性強,醫學高等數學更側重于數學在醫學上的應用,并通過醫學問題的解決加深鞏固對數學知識的理解,更深刻掌握。在上一步去粗取精把握主要矛盾的基礎上,設置變量,利用數學工具刻畫數量之間的關系,從而建立數學模型。同樣的問題可以有不同的數學模型,衡量一個模型的優劣全在其作用的效果,而不是采用多么高深的數學方法。模型可以通過理論推導得到結果,也可以運用mathematics或matlab求數值解,教學設計核心問題應設計如何引導學生分析問題,建立模型,發現問題解決方程式。

      1.3 檢驗合理性,設計模型完善

      建模后引導學生對數學結果進行分析,設計分析求解結果的正確性,求解方程的優越性,知識運用的綜合性分析及求解模型的延續性、穩定性、敏感性分析。進行統計檢驗、誤差分析等,從而檢驗模型合理性,并反復修改模型有關內容,使其更切合實際,這使學生應用數學知識的基礎上進一步深化并結合醫學實際,溫習醫學知識,為臨床實踐打下堅實的基礎。

      1.4 分析結論,設計模型回歸實踐

      數學建模是運用數學知識,解決醫學實際問題,利用已檢驗的模型,設計、分析、解釋已有的現象,并預測未來的發展趨勢。啟發學生這樣的模型代表特點是什么?可以解決哪類醫學實際問題,并引出運用相同方法可以解決的數學模型問題留做學生課后練習。

      2、實例檢驗

      在2003年流行性的傳染病SARS爆發,對于復雜的醫學問題適當假設:某地區人口總數N不變;每個病人每天有效接觸平均人數常數λ ;人群分兩類易感染者(S)和已感染者(I);根據假設,建立SARS數學模型NdIdt=λNSI ,得到解I(t)=11+(1I0-1)e-λI ;通過實踐我們發現當∞時,I1 ,即所有人都被感染,這顯然不符合實際,因為忽略了被感染SARS后,個體具有一定的免疫能力,人群還分出一類移出者R(t),設μ 為日治愈率,此時微分方程為:dIdt=λSI-μI

      dSdt=λSI

      I(0)=I0,S(0)=S0 ,

      解得I=(S0+I0)-S+μλ ln SS0 ;引導學生代入北京4月26日到5月15日SARS上報的數據基本復合實際。獲得的結論我們可以運用指導目前蔓延的禽流感疾病,預測流行病的傳播趨勢,及時有效的采取防御措施。

      3、采取有效措施,重視教學方法改革

      3.1 變革課內教學環節

      以學生為主體,把學生知識獲取,個性發展,能力提高放在首位。課堂強化“啟發式”教學,采用“開放式教學方法,減少課堂講授,增加課堂交流時間,將授課變成一次學生參加的科學研究來解決實際問題,引領學生進行創新實踐的嘗試,鼓勵學生大膽發表見解,選用的案例都是醫學實際問題,并通過設計讓學生認識到數學建模的適用性、有效性,在某些案例的講授環節注重講解深度,注意為學生留有充分想象空間,并引導學生思考一系列相關問題,這種建模方法還可以使用到哪類問題中?建模成功的關鍵是什么?運用到哪些數學知識?該數學知識還能解決什么樣的醫學實際問題?

      3.2 深化課外實踐改革[2]

      數學建模課應通過案例卜椒í踩砑彩道彩笛檎飧鲇行У慕萄模式,建模是一個綜合性的科學,涉及廣泛的數學知識、醫學知識等,采取導學和自學的相結合教學方式,培養學生歸納總結能力和自學能力,在課內引導的基礎上,通過留作業、出開放性思考題的方法引導學生積極收集資料,自學知識的盲點,同時激發學生學習興趣;組建建模小組,小組成員分工合作,運用數學知識解決醫學實際問題,同時培養學生團結協作精神。

      4、循序漸進,實施課程考核方式改革

      4.1 開卷和閉卷相結合[3]

      開卷是布置一個大作業,三、四道醫學類實際問題,同學自由組合3人一組,從資料收集、模型準備、模型假設、計算方法、模型改進、推廣到論文撰寫,教師可以對學生進行全面跟蹤,指導是有度的,教師不干預學生的個性思維,鼓勵尊重個人意見,只是關鍵時刻指出問題所在,在開放開始中使學生成為主體,以小組為單位協作完成一個科研課題,并以書面形式上交,作為開卷考試的成績評定依據。

      4.2 鼓勵性加分作為補充

      篇(9)

      數學是研究現實世界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的。數學的特點不僅在于概念的抽象性、邏輯的嚴密性,結論的明確性和體系的完整性,而且在于它應用的廣泛性,自進入21世紀的知識經濟時代以來,數學科學的地位發生了巨大的變化,它正在從國家經濟和科技的后備走到了前沿。經濟發展的全球化、計算機的迅猛發展,數學理論與方法的不斷擴充使得數學已成為當代高科技的一個重要組成部分,數學已成為一種能夠普遍實施的技術。培養學生應用數學的意識和能力也成為數學教學的一個重要方面。

      目前國際數學界普遍贊同通過開展數學建模活動和在數學教學中推廣使用現代化技術來推動數學教育改革。美國、德國、日本等發達國家普遍都十分重視數學建模教學,把數學建模活動從大學生向中學生轉移是近年國際數學教育發展的一種趨勢。“我國的數學教育在很長一段時間內對于數學與實際、數學與其它學科的聯系未能給予充分的重視,因此,高中數學在數學應用和聯系實際方面需要大力加強。”我國普通高中新的數學教學大綱中也明確提出要切實培養學生解決實際問題的能力,要求增強應用數學的意識,能初步運用數學模型解決實際問題。這些要求不僅符合數學本身發展的需要,也是社會發展的需要。因此我們的數學教學不僅要使學生知道許多重要的數學概念、方法和結論,而且要提高學生的思維能力,培養學生自覺地運用數學知識去處理和解決日常生活中所遇到的問題,從而形成良好的思維品質。而數學建模通過"從實際情境中抽象出數學問題,求解數學模型,回到現實中進行檢驗,必要時修改模型使之更切合實際"這一過程,促使學生圍繞實際問題查閱資料、收集信息、整理加工、獲取新知識,從而拓寬了學生的知識面和能力。數學建模將各種知識綜合應用于解決實際問題中,是培養和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一,是改善學生學習方式的突破口。因此有計劃地開展數學建模活動,將有效地培養學生的能力,提高學生的綜合素質。

      數學建模可以提高學生的學習興趣,培養學生不怕吃苦、敢于戰勝困難的堅強意志,培養自律、團結的優秀品質,培養正確的數學觀。具體的調查表明,大部分學生對數學建模比較感興趣,并不同程度地促進了他們對于數學及其他課程的學習.有許多學生認為:"數學源于生活,生活依靠數學,平時做的題都是理論性較強,實際性較弱的題,都是在理想化狀態下進行討論,而數學建模問題貼近生活,充滿趣味性";"數學建模使我更深切地感受到數學與實際的聯系,感受到數學問題的廣泛,使我們對于學習數學的重要性理解得更為深刻"。數學建模能培養學生應用數學進行分析、推理、證明和計算的能力;用數學語言表達實際問題及用普通人能理解的語言表達數學結果的能力;應用計算機及相應數學軟件的能力;獨立查找文獻,自學的能力,組織、協調、管理的能力;創造力、想象力、聯想力和洞察力。由此,在高中數學教學中滲透數學建模知識是很有必要的。

      那么當前我國高中學生的數學建模意識和建模能力如何呢?下面是節自有關人士對某次競賽中的一道建模題目學生的作答情況所作的抽樣調查。題目內容如下:

      某市教育局組織了一項競賽,聘請了來自不同學校的數名教師做評委組成評判組。本次競賽制定四條評分規則,內容如下:

      (1)評委對本校選手不打分。

      (2)每位評委對每位參賽選手(除本校選手外)都必須打分,且所打分數不相同。

      (3)評委打分方法為:倒數第一名記1分,倒數第二名記2分,依次類推。

      (4)比賽結束后,求出各選手的平均分,按平均分從高到低排序,依此確定本次競賽的名次,以平均分最高者為第一名,依次類推。

      本次比賽中,選手甲所在學校有一名評委,這位評委將不參加對選手甲的評分,其他選手所在學校無人擔任評委。

      (Ⅰ)公布評分規則后,其他選手覺得這種評分規則對甲更有利,請問這種看法是否有道理?(請說明理由)

      (Ⅱ)能否給這次比賽制定更公平的評分規則?若能,請你給出一個更公平的評分規則,并說明理由。

      本題是一道開放性很強的好題,給學生留有很大的發揮空間,不少學生都有精彩的表現,例如關于評分規則的修正,就有下列幾種方案:

      方案1:將選手甲所在學校評委的評分方法改為倒數第一名記1+分,倒數第二名記2+,…依次類推;(評分標準)

      方案2:將選手甲所在學校評委的評分方法改為在原來的基礎上乘以;

      方案3:對甲評分時,用其他評委的平均分計做甲所在學校評委的打分;

      然而也有不少學生為空白,究其原因可能除了時間因素,學生對于較長的文字表述產生畏懼心理、不能正確閱讀是重要因素。同時,一些學生由于不能正確理解規則(3),得出選手甲的平均得分為,其他選手的平均得分為,從而得出錯誤結論.不少學生出現“甲所在學校的評委會故意壓低其他選手的分數,因而對甲有利”的解釋,而沒有意識到作出必要的假設是數學建模方法中的重要且必要的一環。有些學生在正確理解題意的基礎上,提出了“規則對甲有利”的理由,例如:排名在甲前的同學少得了1分;甲所在學校的評委不給其他選手最高分(n分),所以甲得最高分的概率比其他選手高;相當于甲所在學校的評委把最高分給了甲;甲少拿一個分數,若少拿最低分,則有利;若少拿最高分,則不利;等等。以上各種想法都有道理,遺憾的是大部分學生僅僅停留在這些感性認識和文字說明上,沒能進一步引進數學模型和數學符號去進行理性的分析。如何衡量規則的公平性是本題的關鍵,也是建模的原則。很少有學生能夠明確提出這個原則,有些學生在第2問評分規則的修正中,提出“將甲所在學校的評委從評判組中剔除掉”,這種辦法違背實際的要求。有些學生被生活中一些現象誤導,提出“去掉最高分和最低分”的評分規則修正方法,而不去從數學的角度分析和研究。

      通過對這道高中數學知識應用競賽題解答情況的分析,我們了解到學生數學建模意識和建模能力的現狀不容樂觀。學生在數學應用能力上存在的一些問題:(1)數學閱讀能力差,誤解題意。(2)數學建模方法需要提高。(3)數學應用意識不盡人意數學建模意識很有待加強。新課程標準給數學建模提出了更高的要求,也為中學數學建模的發展提供了很好的契機,相信隨著新課程的實施,我們高中生的數學建模意識和建模能力會有大的提高!

      那么高中的數學建模教學應如何進行呢?數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。不同于傳統的教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作。通過教學使學生了解利用數學理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力。數學建模以學生為主,教師利用一些事先設計好的問題,引導學生主動查閱文獻資料和學習新知識,鼓勵學生積極開展討論和辯論,主動探索解決之法。教學過程的重點是創造一個環境去誘導學生的學習欲望、培養他們的自學能力,增強他們的數學素質和創新能力,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。

      (一)在教學中傳授學生初步的數學建模知識。

      中學數學建模的目的旨在培養學生的數學應用意識,掌握數學建模的方法,為將來的學習、工作打下堅實的基礎。在教學時將數學建模中最基本的過程教給學生:利用現行的數學教材,向學生介紹一些常用的、典型的數學模型。如函數模型、不等式模型、數列模型、幾何模型、三角模型、方程模型等。教師應研究在各個教學章節中可引入哪些數學基本模型問題,如儲蓄問題、信用貸款問題可結合在數列教學中。教師可以通過教材中一些不大復雜的應用問題,帶著學生一起來完成數學化的過程,給學生一些數學應用和數學建模的初步體驗。

      例如在學習了二次函數的最值問題后,通過下面的應用題讓學生懂得如何用數學建模的方法來解決實際問題。例:客房的定價問題。一個星級旅館有150個客房,經過一段時間的經營實踐,旅館經理得到了一些數據:每間客房定價為160元時,住房率為55%,每間客房定價為140元時,住房率為65%,

      每間客房定價為120元時,住房率為75%,每間客房定價為100元時,住房率為85%。欲使旅館每天收入最高,每間客房應如何定價?

      [簡化假設]

      (1)每間客房最高定價為160元;

      (2)設隨著房價的下降,住房率呈線性增長;

      (3)設旅館每間客房定價相等。

      [建立模型]

      設y表示旅館一天的總收入,與160元相比每間客房降低的房價為x元。由假設(2)可得,每降價1元,住房率就增加。因此由可知于是問題轉化為:當時,y的最大值是多少?

      [求解模型]

      利用二次函數求最值可得到當x=25即住房定價為135元時,y取最大值13668.75(元),

      [討論與驗證]

      (1)容易驗證此收入在各種已知定價對應的收入中是最大的。如果為了便于管理,定價為140元也是可以的,因為此時它與最高收入只差18.75元。

      (2)如果定價為180元,住房率應為45%,相應的收入只有12150元,因此假設(1)是合理的。

      (二)培養學生的數學應用意識,增強數學建模意識。

      首先,學生的應用意識體現在以下兩個方面:一是面對實際問題,能主動嘗試從數學的角度運用所學知識和方法尋求解決問題的策略,學習者在學習的過程中能夠認識到數學是有用的。二是認識到現實生活中蘊含著大量的數學信息,數學在現實世界中有著廣泛的應用:生活中處處有數學,數學就在他的身邊。其次,關于如何培養學生的應用意識:在數學教學和對學生數學學習的指導中,介紹知識的來龍去脈時多與實際生活相聯系。例如,日常生活中存在著“不同形式的等量關系和不等量關系”以及“變量間的函數對應關系”、“變相間的非確切的相關關系”、“事物發生的可預測性,可能性大小”等,這些正是數學中引入“方程”、“不等式”、“函數”“變量間的線性相關”、“概率”的實際背景。另外鍛煉學生學會運用數學語言描述周圍世界出現的數學現象。數學是一種“世界通用語言”它能夠準確、清楚、間接地刻畫和描述日常生活中的許多現象。應讓學生養成運用數學語言進行交流的習慣。例如,當學生乘坐出租車時,他應能意識到付費與行駛時間或路程之間具有一定的函數關系。鼓勵學生運用數學建模解決實際問題。首先通過觀察分析、提煉出實際問題的數學模型,然后再把數學模型納入某知識系統去處理,當然這不但要求學生有一定的抽象能力,而且要有相當的觀察、分析、綜合、類比能力。學生的這種能力的獲得不是一朝一夕的事情,需要把數學建模意識貫穿在教學的始終,也就是要不斷的引導學生用數學思維的觀點去觀察、分析和表示各種事物關系、空間關系和數學信息,從紛繁復雜的具體問題中抽象出我們熟悉的數學模型,進而達到用數學模型來解決實際問題,使數學建模意識成為學生思考問題的方法和習慣。通過教師的潛移默化,經常滲透數學建模意識,學生可以從各類大量的建模問題中逐步領悟到數學建模的廣泛應用,從而激發學生去研究數學建模的興趣,提高他們運用數學知識進行建模的能力。

      (三)在教學中注意聯系相關學科加以運用

      在數學建模教學中應該重視選用數學與物理、化學、生物、美學等知識相結合的跨學科問題和大量與日常生活相聯系(如投資買賣、銀行儲蓄、測量、乘車、運動等方面)的數學問題,從其它學科中選擇應用題,通過構建模型,培養學生應用數學工具解決該學科難題的能力。例如,高中生物學科以描述性的語言為主,有的學生往往以為學好生物學是與數學沒有關系的。他們尚未樹立理科意識,缺乏理科思維。比如:他們不會用數學上的排列與組合來分析減數分裂過程配子的基因組成;也不會用數學上的概率的相加、相乘原理來解決一些遺傳病機率的計算等等。這些需要教師在平時相應的課堂內容教學中引導學生進行數學建模。因此我們在教學中應注意與其它學科的呼應,這不但可以幫助學生加深對其它學科的理解,也是培養學生建模意識的一個不可忽視的途徑。又例如教了正弦函數后,可引導學生用模型函數寫出物理中振動圖象或交流圖象的數學表達式。

      最后,為了培養學生的建模意識,中學數學教師應首先需要提高自己的建模意識。中學數學教師除需要了解數學科學的發展歷史和發展動態之外,還需要不斷地學習一些新的數學建模理論,并且努力鉆研如何把中學數學知識應用于現實生活。中學教師只有通過對數學建模的系統學習和研究,才能準確地的把握數學建模問題的深度和難度,更好地推動中學數學建模教學的發展。

      參考文獻:

      1.《問題解決的數學模型方法》北京師范大學出版社,1999.8

      篇(10)

      那么當前我國高中學生的數學建模意識和建模能力如何呢?下面是節自有關人士對某次競賽中的一道建模題目學生的作答情況所作的抽樣調查。題目內容如下:

      某市教育局組織了一項競賽,聘請了來自不同學校的數名教師做評委組成評判組。本次競賽制定四條評分規則,內容如下:

      (1)評委對本校選手不打分。

      (2)每位評委對每位參賽選手(除本校選手外)都必須打分,且所打分數不相同。

      (3)評委打分方法為:倒數第一名記1分,倒數第二名記2分,依次類推。

      (4)比賽結束后,求出各選手的平均分,按平均分從高到低排序,依此確定本次競賽的名次,以平均分最高者為第一名,依次類推。

      本次比賽中,選手甲所在學校有一名評委,這位評委將不參加對選手甲的評分,其他選手所在學校無人擔任評委。

      (Ⅰ)公布評分規則后,其他選手覺得這種評分規則對甲更有利,請問這種看法是否有道理?(請說明理由)

      (Ⅱ)能否給這次比賽制定更公平的評分規則?若能,請你給出一個更公平的評分規則,并說明理由。

      本題是一道開放性很強的好題,給學生留有很大的發揮空間,不少學生都有精彩的表現,例如關于評分規則的修正,就有下列幾種方案:

      方案1:將選手甲所在學校評委的評分方法改為倒數第一名記1+分,倒數第二名記2+,…依次類推;(評分標準)

      方案2:將選手甲所在學校評委的評分方法改為在原來的基礎上乘以;

      方案3:對甲評分時,用其他評委的平均分計做甲所在學校評委的打分;

      然而也有不少學生為空白,究其原因可能除了時間因素,學生對于較長的文字表述產生畏懼心理、不能正確閱讀是重要因素。同時,一些學生由于不能正確理解規則(3),得出選手甲的平均得分為,其他選手的平均得分為,從而得出錯誤結論.不少學生出現“甲所在學校的評委會故意壓低其他選手的分數,因而對甲有利”的解釋,而沒有意識到作出必要的假設是數學建模方法中的重要且必要的一環。有些學生在正確理解題意的基礎上,提出了“規則對甲有利”的理由,例如:排名在甲前的同學少得了1分;甲所在學校的評委不給其他選手最高分(n分),所以甲得最高分的概率比其他選手高;相當于甲所在學校的評委把最高分給了甲;甲少拿一個分數,若少拿最低分,則有利;若少拿最高分,則不利;等等。以上各種想法都有道理,遺憾的是大部分學生僅僅停留在這些感性認識和文字說明上,沒能進一步引進數學模型和數學符號去進行理性的分析。如何衡量規則的公平性是本題的關鍵,也是建模的原則。很少有學生能夠明確提出這個原則,有些學生在第2問評分規則的修正中,提出“將甲所在學校的評委從評判組中剔除掉”,這種辦法違背實際的要求。有些學生被生活中一些現象誤導,提出“去掉最高分和最低分”的評分規則修正方法,而不去從數學的角度分析和研究。

      通過對這道高中數學知識應用競賽題解答情況的分析,我們了解到學生數學建模意識和建模能力的現狀不容樂觀。學生在數學應用能力上存在的一些問題:(1)數學閱讀能力差,誤解題意。(2)數學建模方法需要提高。(3)數學應用意識不盡人意數學建模意識很有待加強。新課程標準給數學建模提出了更高的要求,也為中學數學建模的發展提供了很好的契機,相信隨著新課程的實施,我們高中生的數學建模意識和建模能力會有大的提高!

      那么高中的數學建模教學應如何進行呢?數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。不同于傳統的教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作。通過教學使學生了解利用數學理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力。數學建模以學生為主,教師利用一些事先設計好的問題,引導學生主動查閱文獻資料和學習新知識,鼓勵學生積極開展討論和辯論,主動探索解決之法。教學過程的重點是創造一個環境去誘導學生的學習欲望、培養他們的自學能力,增強他們的數學素質和創新能力,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。

      (一)在教學中傳授學生初步的數學建模知識。

      中學數學建模的目的旨在培養學生的數學應用意識,掌握數學建模的方法,為將來的學習、工作打下堅實的基礎。在教學時將數學建模中最基本的過程教給學生:利用現行的數學教材,向學生介紹一些常用的、典型的數學模型。如函數模型、不等式模型、數列模型、幾何模型、三角模型、方程模型等。教師應研究在各個教學章節中可引入哪些數學基本模型問題,如儲蓄問題、信用貸款問題可結合在數列教學中。教師可以通過教材中一些不大復雜的應用問題,帶著學生一起來完成數學化的過程,給學生一些數學應用和數學建模的初步體驗。

      例如在學習了二次函數的最值問題后,通過下面的應用題讓學生懂得如何用數學建模的方法來解決實際問題。例:客房的定價問題。一個星級旅館有150個客房,經過一段時間的經營實踐,旅館經理得到了一些數據:每間客房定價為160元時,住房率為55%,每間客房定價為140元時,住房率為65%,

      每間客房定價為120元時,住房率為75%,每間客房定價為100元時,住房率為85%。欲使旅館每天收入最高,每間客房應如何定價?

      [簡化假設]

      (1)每間客房最高定價為160元;

      (2)設隨著房價的下降,住房率呈線性增長;

      (3)設旅館每間客房定價相等。

      [建立模型]

      設y表示旅館一天的總收入,與160元相比每間客房降低的房價為x元。由假設(2)可得,每降價1元,住房率就增加。因此

      由可知

      于是問題轉化為:當時,y的最大值是多少?

      [求解模型]

      利用二次函數求最值可得到當x=25即住房定價為135元時,y取最大值13668.75(元),

      [討論與驗證]

      (1)容易驗證此收入在各種已知定價對應的收入中是最大的。如果為了便于管理,定價為140元也是可以的,因為此時它與最高收入只差18.75元。

      (2)如果定價為180元,住房率應為45%,相應的收入只有12150元,因此假設(1)是合理的。

      (二)培養學生的數學應用意識,增強數學建模意識。

      首先,學生的應用意識體現在以下兩個方面:一是面對實際問題,能主動嘗試從數學的角度運用所學知識和方法尋求解決問題的策略,學習者在學習的過程中能夠認識到數學是有用的。二是認識到現實生活中蘊含著大量的數學信息,數學在現實世界中有著廣泛的應用:生活中處處有數學,數學就在他的身邊。其次,關于如何培養學生的應用意識:在數學教學和對學生數學學習的指導中,介紹知識的來龍去脈時多與實際生活相聯系。例如,日常生活中存在著“不同形式的等量關系和不等量關系”以及“變量間的函數對應關系”、“變相間的非確切的相關關系”、“事物發生的可預測性,可能性大小”等,這些正是數學中引入“方程”、“不等式”、“函數”“變量間的線性相關”、“概率”的實際背景。另外鍛煉學生學會運用數學語言描述周圍世界出現的數學現象。數學是一種“世界通用語言”它能夠準確、清楚、間接地刻畫和描述日常生活中的許多現象。應讓學生養成運用數學語言進行交流的習慣。例如,當學生乘坐出租車時,他應能意識到付費與行駛時間或路程之間具有一定的函數關系。鼓勵學生運用數學建模解決實際問題。首先通過觀察分析、提煉出實際問題的數學模型,然后再把數學模型納入某知識系統去處理,當然這不但要求學生有一定的抽象能力,而且要有相當的觀察、分析、綜合、類比能力。學生的這種能力的獲得不是一朝一夕的事情,需要把數學建模意識貫穿在教學的始終,也就是要不斷的引導學生用數學思維的觀點去觀察、分析和表示各種事物關系、空間關系和數學信息,從紛繁復雜的具體問題中抽象出我們熟悉的數學模型,進而達到用數學模型來解決實際問題,使數學建模意識成為學生思考問題的方法和習慣。通過教師的潛移默化,經常滲透數學建模意識,學生可以從各類大量的建模問題中逐步領悟到數學建模的廣泛應用,從而激發學生去研究數學建模的興趣,提高他們運用數學知識進行建模的能力。

      (三)在教學中注意聯系相關學科加以運用

      在數學建模教學中應該重視選用數學與物理、化學、生物、美學等知識相結合的跨學科問題和大量與日常生活相聯系(如投資買賣、銀行儲蓄、測量、乘車、運動等方面)的數學問題,從其它學科中選擇應用題,通過構建模型,培養學生應用數學工具解決該學科難題的能力。例如,高中生物學科以描述性的語言為主,有的學生往往以為學好生物學是與數學沒有關系的。他們尚未樹立理科意識,缺乏理科思維。比如:他們不會用數學上的排列與組合來分析減數分裂過程配子的基因組成;也不會用數學上的概率的相加、相乘原理來解決一些遺傳病機率的計算等等。這些需要教師在平時相應的課堂內容教學中引導學生進行數學建模。因此我們在教學中應注意與其它學科的呼應,這不但可以幫助學生加深對其它學科的理解,也是培養學生建模意識的一個不可忽視的途徑。又例如教了正弦函數后,可引導學生用模型函數寫出物理中振動圖象或交流圖象的數學表達式。

      最后,為了培養學生的建模意識,中學數學教師應首先需要提高自己的建模意識。中學數學教師除需要了解數學科學的發展歷史和發展動態之外,還需要不斷地學習一些新的數學建模理論,并且努力鉆研如何把中學數學知識應用于現實生活。中學教師只有通過對數學建模的系統學習和研究,才能準確地的把握數學建模問題的深度和難度,更好地推動中學數學建模教學的發展。

      參考文獻:

      1.《問題解決的數學模型方法》北京師范大學出版社,1999.8

      篇(11)

      教師應事先研究在各個章節中可以引入哪些相關模型問題,如:在講到極限計算時,可以引入復利、連續復利和貼現模型,不僅可以讓學生了解一些經濟名詞,而且還可以讓他們深入理解這些經濟名詞背后的數學原理.對于沒有線性代數基礎的學生,若引入投入產出分析模型,很明顯就不合適了.數學教師在教學的過程中要經常滲透建模意識,通過教師應用舉例,學生可以從各種模型中領悟到數學建模使用的廣泛性和數學學科的實用性.近幾十年來,隨著科學技術的發展和社會的進步,數學這一重要的基礎學科迅速地向自然科學和社會科學的各個領域滲透,并在經濟建設、工程技術及金融管理等方面發揮出越來越明顯,甚至是舉足輕重的作用.“高技術本質上是一種數學技術”的觀念,已為越來越多的人所認識和接受.

      1.2各種軟件的使用

      高校課堂教學過程中,現代教育技術以及各種數學軟件已經廣泛使用.首先,教師將多媒體教學與傳統的板書教學有機結合,使其優勢互補.利用多媒體制作一些動畫,如旋轉多面體的旋轉過程、正態分布圖像等,使學生對抽象的數學符號、數學概念有直觀形象的認識.其次,模型的求解需要借助于一些軟件,如LINGO、MATLAB、SPSS等.事實上,我們手中現有的軟件也可以起到類似作用,例如,EXCEL軟件,這是大家都比較熟悉的,在求解簡單的統計學的檢驗模型時,完全可以使用EXCEL,而不需要專業的統計學軟件.這就需要教師們會使用一些相關軟件.

      2數學建模思想對學生的促進

      2.1數學建模思想有助于激發學生學習數學的興趣

      數學一門比較枯燥的基礎學科.興趣是學好數學的關鍵,有興趣才有渴求,有渴求才有動力,有動力才有成功.尤其對于大一的學生來說,他們剛剛進入大學校門,對于大學的認知是全新的,對于知識是渴求的.他們大部分都是認真的,希望與老師一起走進數學的海洋,與老師一起學習、共同進步.因此,高校數學教師要善于發揮數學教師的特長、優勢、氣質來吸引學生,從而培養學生的學習興趣.在數學教學過程中引入數學模型,不僅豐富了數學教學內容,還使數學與實際生活聯系更加密切.如:人口增長預測、奧運公交路線設計、世博會效果評價、產品定價等實際問題,可以采用不同的教學形式,把實際問題轉化成數學問題,建立了數學理論通向數學模型的橋梁,從而激發學生學習數學的興趣.

      主站蜘蛛池模板: 亚洲精品乱码久久久久久自慰| 99热成人精品热久久669| 国产精品内射后入合集| 欧美精品一区二区在线精品| 亚洲精品无码不卡| 久久国产乱子伦免费精品| 欧美久久久久久午夜精品| 国产成人久久精品麻豆一区| 91麻豆国产福利精品| 小辣椒福利视频精品导航| 欧美精品黑人粗大免费| 97久视频精品视频在线老司机 | 国产精品va久久久久久久| 97精品国产一区二区三区| 亚洲精品无码久久一线| 精品一区二区无码AV| 国产A√精品区二区三区四区| 免费精品一区二区三区第35| 国产精品久久99| 99久久免费国产精精品| 国产精品人人爽人人做我的可爱 | 粉嫩精品美女国产在线观看| 精品久久一区二区三区| 国产精品国色综合久久| 日产精品久久久久久久性色| 中文字幕精品视频在线| 在线涩涩免费观看国产精品| 午夜福利麻豆国产精品 | 国产精品自在欧美一区| 国产成人精品曰本亚洲79ren| 欧美精品天天操| 精品国产91久久久久久久| 国产精品欧美日韩| 国产精品网站在线观看| 国产精品视频一区二区三区经| 97精品一区二区视频在线观看| 国产精品VA在线观看无码不卡 | 精品亚洲一区二区三区在线观看| 国产精品热久久毛片| 国产精品女人呻吟在线观看 | 亚洲午夜精品久久久久久人妖|